首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   91篇
  国内免费   109篇
测绘学   47篇
大气科学   367篇
地球物理   16篇
地质学   263篇
海洋学   23篇
综合类   27篇
自然地理   119篇
  2024年   9篇
  2023年   26篇
  2022年   32篇
  2021年   42篇
  2020年   25篇
  2019年   28篇
  2018年   28篇
  2017年   30篇
  2016年   33篇
  2015年   18篇
  2014年   47篇
  2013年   38篇
  2012年   45篇
  2011年   36篇
  2010年   46篇
  2009年   41篇
  2008年   27篇
  2007年   36篇
  2006年   20篇
  2005年   34篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   31篇
  2000年   18篇
  1999年   14篇
  1998年   19篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   3篇
  1993年   11篇
  1992年   14篇
  1991年   11篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1936年   1篇
排序方式: 共有862条查询结果,搜索用时 31 毫秒
281.
沈阳降雪含水比变化特征及其大气影响因子   总被引:1,自引:0,他引:1  
崔锦  周晓珊  阎琦  张爱忠 《冰川冻土》2015,37(6):1508-1514
降雪含水比是新增积雪深度与融化后等量液体深度的比值, 是冬季雪深预报中的一个重要参数, 一般使用经验值10进行积雪深度换算. 利用1981-2012年沈阳站降水量、积雪深度、气温和风速等观测资料及1999-2012年NCEP再分析资料(1°×1°), 分析了沈阳站32 a降雪含水比的变化特征和大气影响因子. 结果表明: 沈阳站降雪含水比的平均值为11.4, 主要集中在6~12区间变化, 小于4和大于20的极值发生概率相对较低, 极值都出现在12月份, 11月和3月均值接近10, 而其他月份在12左右. 小雪的降雪含水比均值最大为13.3, 其它为10点多. 500 hPa上温度和550 hPa上的风速是沈阳站降水含水比的高空大气影响因子.  相似文献   
282.
积雪是新疆高海拔地区大多数河流的重要补给来源之一, 不仅是春汛期间融雪性洪水灾害和冰冻灾害的直接原因, 在水资源管理、 灾害防治和融雪模拟预报中也扮演着重要角色. 针对目前积雪信息提取方法的优势与不足, 结合二维特征空间理论, 构建积雪信息反演模型, 并与支持向量机提取积雪信息进行精度对比分析. 结果表明: 相比其他积雪信息提取方法, 利用归一化积雪指数(NDSI)和归一化植被指数(NDVI)建立二维特征空间, 且在特征空间基础之上构建的NN模型, 反演新疆北部积雪信息精度较高, 相关系数达0.837, 提取精度优于支持向量机(SVM)方法, 对当地防洪灾害模拟预测、 生态环境保护、 社会经济发展等方面具有一定参考意义.  相似文献   
283.
1981-2010年青藏高原积雪日数时空变化特征分析   总被引:2,自引:0,他引:2  
全球气候变暖大背景下, 作为冰冻圈最为活跃和敏感因子, 青藏高原积雪变化备受国内外关注. 本文利用青藏高原(以下简称高原)1981-2010年地面观测积雪日数资料, 较系统地分析了近30年来高原积雪日数的时空变化特点. 主要结论如下: (1) 近30年内高原平均年积雪日数出现了非常显著的减少趋势, 减少幅度达4.81 d·(10a)-1, 其中冬季减幅最为明显, 为2.36 d·(10a)-1, 其次是春季(2.05 d·(10a)-1), 而夏季最少(0.21 d·(10a)-1); (2) 30年间, 积雪日数较少的年份多数出现在本世纪初10年内, 且2010年属于异常偏少年, 高原积雪日数在1997年左右发生了由多到少的气候突变; (3) 在空间上, 北部柴达木盆地及其附件区域部分气象台站观测的年积雪日数出现了不显著的增加趋势之外, 高原91.5%的气象站年积雪日数呈减少趋势, 且高寒内陆中东部和西南喜马拉雅山脉南麓等高原历年积雪日数高值区域减少最为明显; (4) 由于受到气象台站所在地理位置、地形地貌、地表类型、海拔高度、局地气候以及大气环流等综合影响, 高原平均年积雪日数的空间差异很大, 最多达146 d, 最少的则不足1 d, 平均仅为38 d, 其中高寒内陆中东部是积雪日数最长的区域, 而东南部海拔和纬度较低的干热河谷地区积雪日数最少.  相似文献   
284.
本文提出了一种分级实现的模糊聚类算法。CFCM算法具有良好的分类精度,但其初值的选取却是非常困难的。本文所给算法第一级采用改进的SFCM算法,其结果作为第二级聚类的初值;第二级采用CFCM算法细分。在遥感积雪识别中的实验结果表明,这种算法改善了分类精度,而且由于初值选取较为合理,并不降低分类速度。  相似文献   
285.
韦志刚 《湖泊科学》2003,15(Z1):68-76
本文根据青藏高原主体72个气象站日测资料建立的积雪序列分析了高原积雪对长江流域夏季降水的影响,高原冬春积雪异常与长江流域汛期特别是6、7月降水呈显著的正相关关系.青藏高原冬春多雪年,随后夏季多出现Ⅱ、Ⅲ类雨型,长江中游和下游鄱阳湖地区多偏涝;青藏高原冬春少雪年,随后夏季多出现Ⅰ、Ⅱ类雨型,长江下游鄱阳湖地区多偏旱,长江中游多正常偏旱.多(少)雪年东亚洲大陆上空的气温明显偏低(高),而大陆南部海洋上空的气温明显偏高(低),降低(增加)了陆海温差,延迟(促进)了东亚夏季风的到来,一定程度上减弱(加强)东亚季风的强度.多(少)雪随后夏季,由于南亚夏季风和东亚夏季风都明显减弱(增强),对流层中低层从孟加拉湾吹向中南半岛的西南风减弱(增强),我国大陆东部的南风也明显减弱(增强),西太副高偏南(北);青藏高原东南侧到中南半岛北部的上升运动较弱(强),长江中下游及其以东洋面上升运动较强(弱),长江中下游地区多(少)雨.  相似文献   
286.
主要回顾了欧亚大陆冷季积雪与亚洲夏季风的关系,特别是积雪对季风演变和强度的影响。从Blanford(1884)着眼喜马拉雅山测站积雪开始,到20世纪70年代卫星测量的大范围雪盖资料的问世,直至近几十年来全球气候模式模拟与资料分析的结合,回顾了人们在不同时期对积雪-季风关系的不同认识以及对积雪影响季风的物理过程的不同理解。一方面,积雪通过反照率效应影响温度、温度梯度和大气环流包括季风环流;另一方面,积雪通过融化效应影响大气,特别是增强大气异常信号的持续性。在这些过程中,陆面积雪与大气运动的相互作用是一个正反馈的过程。另外,特别关注不同地区和季节的欧亚大陆积雪对不同亚洲区域季风的不同影响,以及积雪在季风演变过程中对不同阶段季风特征的作用。虽然积雪与季风的关系非常复杂,加深对这些复杂关系的认识,对理解季风系统的整体变化以及改进季风预报都尤为重要。  相似文献   
287.
288.
利用MODIS数据判识祁连山区积雪方法研究   总被引:2,自引:0,他引:2  
王兴  张强  郭铌  蔡迪花 《干旱气象》2007,25(2):29-34
对祁连山区积雪、云和各种下垫面进行光谱分析,利用2003年7月至2005年3月的MODIS数据资料,在前人所做研究工作的基础上提出利用归一化差值积雪指数NDSI(Normalized Difference Snow Index)和中分辨率成像光谱仪(Moderate Resolution Imagigng Spectroradiometer)的band 18和band31的结合,采用逐步逼近法去除大部分云、盐湖、冰面、沙漠、戈壁等对积雪判识的干扰,从而判识出祁连山区积雪。由结果分析和检验显示,利用本文方法可以比较有效识别出祁连山区积雪。  相似文献   
289.
气候变化对青藏高原的水储量造成显著影响,严重威胁下游地区涉及10亿人口的水资源安全、水灾害防治和水生态保护。本研究集成多源卫星遥感(包括卫星重力、卫星测高、光学影像等)及相关反演融合算法和部分再分析数据,在前期工作基础上延长并生成了2000—2020年青藏高原各类水储量(湖泊、冰川、雪深和雪水当量、总水储量)变化数据,并分析其气候驱动机制。结果表明:(1) 2002—2020年间青藏高原外流区总水储量呈显著下降趋势(-10.90 Gt/a),主要由冰川质量损失主导;内流区总水储量呈显著上升趋势(6.40 Gt/a),其中湖泊水量扩张占主导。(2)青藏湖泊整体呈扩张趋势,并分为3个阶段:2000—2012年为平稳增长期(6.35 Gt/a),2012—2017年为相对稳定期(1.42 Gt/a),2017年后进入快速增长期(10.59 Gt/a);湖泊水量变化与降水量变化一致性较高。(3)藏东南地区的冰川呈快速消融趋势(-4.50 Gt/a),气温升高和降水年际波动是近年来该地区冰川后退的主要原因。(4) 2016—2020年平均雪水当量较2001—2015年呈增加趋势,积雪变化主要受累...  相似文献   
290.
着眼于我国草原防灾减灾以及国家开展重特大雪灾应急响应工作的极迫切现实需求,基于NASA MODIS数据,以天为监测(响应)时间单元,以旬为监测集成时段,对2008年春节大雪灾期间我国草原积雪状况实现了系统的遥感监测,获取了2007年10月至2008年3月期间中国北方9省区草原积雪发生范围及其面积等数据信息,揭示了监测期间我国草原积雪发生的时空特征。青藏高原与内蒙古为我国持续降雪的核心区域,其他地区降雪情况随时间出现一定的波动;除东北地区外,积雪面积均在1月下旬达到最大值;各省区草原积雪面积占草原总面积的比例随时间的变化总体持续增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号