首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   4篇
  国内免费   11篇
测绘学   6篇
大气科学   2篇
地球物理   71篇
地质学   39篇
海洋学   3篇
天文学   2篇
综合类   4篇
自然地理   42篇
  2024年   3篇
  2023年   5篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   14篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   11篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1948年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
11.
云南螳螂川流域之地文   总被引:1,自引:0,他引:1  
第一章 前言 螳螂川位于云南高原中部,上承滇池,下游改名普渡河,北流入金沙江(注一),流域面积约五.五○○余方公里,惟其盘龙江及鸣矣河二大支流之上源,未及攷察,本文论述之范围,仅以滇池、安宁、富民等山间盆地及贯穿其间之螳螂川干流河谷为限,面积约当流域全面积之半·(图一) 滇池位于昆明之南,海拔约一·八八六公尺(注二),为云南第一大湖,寻常洪水位时,面积约三四○方公里,西岸迫近断崖,北东南三面匯纳盘龙  相似文献   
12.
本文在滇池湖流特性研究的基础上,建立了滇池平面二维CODMn输移扩散数学模型, 模型对污染物进入滇池水体后的输移扩散规律进行模拟分析,对滇池周围西园隧洞引水工程第一系列污染控制工程措施对滇池主要污染指标CODMn的影响进行评价,为综合治理滇池提供了理论依据。  相似文献   
13.
滇池蓝藻水华发生频率与气象因子的关系   总被引:6,自引:4,他引:2  
蓝藻水华暴发是在一定的营养、气候、水文条件和生态环境下形成的藻类过度繁殖和聚集的现象,是水体环境因子(如总氮、总磷、pH值、溶解氧)和气象因子综合作用的结果.然而滇池周年性水华暴发标志着滇池蓝藻水华在当前水质条件下,气象因子为关键影响因子.为了进一步探究滇池蓝藻水华发生与气象因子的规律,本文利用2010-2011年滇池蓝藻水华遥感监测资料与周边地面气象站逐月资料,研究滇池蓝藻水华月发生频率与月气象因子的关系.结果显示,滇池蓝藻水华发生频率与平均气温、最低气温、平均风速、累计日照时数和降雨量等气象因子均表现为显著相关,其中与日照时数和风速呈显著负相关.各因子中与风速的相关系数最高,说明滇池各月蓝藻水华发生频率高低与风速关系最为密切,进一步验证了在具备蓝藻水华发生所需营养盐条件下,水体稳定性对蓝藻水华发生的影响更为重要的结论.以上结果可为科学预测蓝藻水华发生,并采取相应措施减少其带来的影响提供理论依据.  相似文献   
14.
大泊口位于滇池草海南部,水域面积0.52 km2,平均水深约2 m,作为滇池草海重富营养化水域生态修复示范区,大泊口分别于2015和2019年开展了两期生态修复工程,经过近年来的系统治理,大泊口水生态治理效果初步显现。为分析探究成功修复湖区水质改善、生态系统企稳向好的原因,本研究选择2015年2月—2021年12月共7年的连续监测数据,根据工程开展情况以及水生态状况将大泊口水域划分为4个部分(A1~A4水域),首先分析4个区域内主要的水质指标(悬浮物(SS)、化学需氧量(CODCr)、总磷(TP)、总氮(TN)和叶绿素a(Chl.a))的变化趋势和相关性,其次探究不同类型生态工程的修复效果,最后与草海和外海水域进行对比,分析大泊口的治理效果。结果表明,治理后大泊口A1~A4水域的CODCr、TP和Chl.a稳定下降,CODCr分别降低18.65、27.96、25.26、40.92 mg/L,TP分别降低0.11、0.10、0.11、0.14mg/L,Chl.a分别降低0.037、0.068、0.06...  相似文献   
15.
由于具有高效的CO2-浓缩机制,蓝藻在低CO2浓度条件下具有竞争优势。然而,随着大气中CO2浓度急剧增加,蓝藻CO2-浓缩机制如何响应的研究较少。因此,本文以常见水华蓝藻——微囊藻为研究对象,通过对滇池微囊藻水华动态及不同CO2-浓缩机制基因型进行监测,探讨蓝藻CO2-浓缩机制基因的微进化特征及其动态变化。同时,设置高(0.08%)、中(0.04%)、低(0.02%)CO2浓度(V/V)进一步揭示微囊藻不同CO2-浓缩机制基因微进化对CO2的竞争效应。结果表明:滇池无机碳浓度在4个采样点存在空间差异性,均呈现先降低后升高的趋势,并以HCO3-为主要无机碳存在形式。调查期间,东大河、观音山、洛龙河和生态所4个采样点的微囊藻均以sbtA基因型占绝对优势,相对丰度远高于bicA基因型。在不同水华时期,bicA基因型和sbtA基因型呈现相反的变化趋势,即从...  相似文献   
16.
为了揭示滇池不同湖区浮游动物群落稳定性及其驱动因子,于2020年对滇池草海、大泊口、外海3个具有一定空间分隔的区域,按季度进行4次采样调查。结果表明,大泊口区域的溶解氧、透明度指标显著高于外海,总氮、总磷、悬浮物、叶绿素a和化学需氧量等指标浓度显著低于外海,草海理化因子浓度介于大泊口与外海之间。研究期间3个区域共鉴定出浮游动物41属(枝角类12属、桡足类8属、轮虫21属),轮虫种类和密度均占较大比例。浮游动物年平均密度大泊口(7771.3 ind./L)>草海(2901.1 ind./L)>外海(634.8 ind./L);年平均生物量草海(3.72 mg/L)>大泊口(2.15 mg/L)>外海(2.09 mg/L)。非参数多元方差分析(PERMANOVA)与相似性百分比分析(SIMPER)结果表明,滇池3个区域间浮游动物群落结构差异极显著,导致大泊口与草海、外海群落结构呈极显著差异的属种为轮虫类群的种类,导致草海与外海群落结构呈极显著差异的属种为枝角类和轮虫类群的种类。此外,浮游动物群落稳定性与物种多样性呈显著的正相关关系,且经过生态修复后水质有所改善的湖区...  相似文献   
17.
蓖齿眼子菜的光合速率及影响因素   总被引:10,自引:2,他引:8  
陈开宁  强胜  李文朝 《湖泊科学》2002,14(4):357-362
本文研究了蓖齿眼子菜(Potamogeon pectinatus L)在滇池的光合速率、体内叶绿素季节变化及光和水温对其光合速率影响,并根据实验,计算出了蓖齿眼子菜生长的光补偿点,研究结果表明,蓖齿眼子菜1~3月份的净光合产氧量最大,为1.82~1.83mg/(g·h),6月份最低,为0.63 mg/(g·h);植物体内Chl.a和Chl.b平均含量分别为0.25~1.15mg/(g·h)和0.28~0.85mg/(g·h),蓖齿眼子菜可以通过调节体内Chl.a/Chl.b值来适应不同季节生长;蓖齿眼子菜有较宽的水温适应范围,10℃时的净光合产氧量可达0.88mg/(g·h),最高值出现在水温25℃,为1.16mg/(g·h),而30℃以上的水温已表现出对其生长的不利影响;蓖齿跟子菜生长的光补偿点为358~1256Lx,并随温度上升而逐渐增加.  相似文献   
18.
白登磷矿是我国重要的浅海相磷块岩矿床,而青龙哨磷矿是我国重要的陆相磷块岩矿床.两地磷矿品位高,储量大,是滇池地区正在开采的2个重要磷矿基地.野外工作研究发现,青龙哨角砾状磷块岩顶板的磷锶铝石矿层和高岭土黏土岩二者呈超覆式不整合接触.深入研究发现其具有陆相磷块岩的许多特征,而没有浅海相磷块岩的原生沉积构造特征.同时,白登磷矿见上下2层工业矿体,而青龙哨磷矿仅见1层工业矿体.对此二矿床特点进行了对比分析.  相似文献   
19.
滇池流域石漠化特征分析   总被引:2,自引:2,他引:0  
张华  王宇  柴金龙 《中国岩溶》2011,30(2):181-186
位于云南省会昆明盆地内的滇池流域是滇中岩溶和石漠化较为发育的地区,石漠化总面积225.56 km2,占流域总面积的7.71%,占岩溶总面积32.69%。石漠化主要分布在望海山、大板桥—呈贡、黑林铺、海口、梁王山、上蒜片区,其中又以北东部的大板桥片区石漠化最为严重。石漠化已造成流域内水土流失加剧、可耕地面积减少、土壤涵养水源能力降低及生态环境恶化等危害。通过地面调查和ETM遥感解译,查清了流域内石漠化的发育分布与碳酸盐岩的岩性及其组合、岩溶作用、地形地貌、气象等自然因素、人为因素和工业污染关系密切。针对石漠化的形成原因,提出了生态修复、农田基本建设、水资源开发利用、农村能源建设、小集镇建设、土地合理利用等治理措施。  相似文献   
20.
The water quality of Dianchi Lake declines quickly and the eutrophication is getting serious. To identify the internal pollution load of Dianchi Lake it is necessary to evaluate its sediment accumulation. Sedimentation rates of Dianchi Lake are determined by 137Cs dating. However, 137Cs vertical distribution in sediment cores of Dianchi Lake has special characteristics because Dianchi Lake is located on the southeast of the Qinghai-Tibet Plateau, the Kunming quasi-stationary front is over the borders of Yunnan and Guizhou where the specific precipitation is distributed. Besides 1954, 1963 and 1986 137Cs marks can be determined in sediment cores, a 137Cs mark of 1976 representing the major period of 137Cs released from China unclear test can be determined and used for an auxiliary dating mark. Meanwhile Dianchi Lake is divided into seven sections based on the water depth, basin topography, hydrological features and supplies of silt and the lakebed area of each section is calculated. The mean annual sedimentation rates for seven sections are 0.0810, 0.1352, 0.1457, 0.1333, 0.0904, 0.1267 and 0.1023 g/cm2a in 1963–2003, respectively. The gross sediment accumulation of the lake is 26.18×104 t/a in recent 17 years and 39.86×104 t/a in recent 50 years. Foundation: National Natural Science Foundation of China, No.40771186; The Key Project of the State Key Laboratory of Soil Sustainable Agriculture, Nanjing Institute of Soil Sciences, Chinese Academy of Sciences, No.5022505 Author: Zhang Yan (1962–), Ph.D and Associate Professor, specialized in environmental change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号