首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7023篇
  免费   1418篇
  国内免费   1521篇
测绘学   479篇
大气科学   946篇
地球物理   1466篇
地质学   4273篇
海洋学   871篇
天文学   144篇
综合类   396篇
自然地理   1387篇
  2024年   87篇
  2023年   343篇
  2022年   399篇
  2021年   364篇
  2020年   335篇
  2019年   321篇
  2018年   262篇
  2017年   282篇
  2016年   238篇
  2015年   306篇
  2014年   419篇
  2013年   330篇
  2012年   419篇
  2011年   429篇
  2010年   403篇
  2009年   384篇
  2008年   369篇
  2007年   354篇
  2006年   377篇
  2005年   314篇
  2004年   308篇
  2003年   278篇
  2002年   279篇
  2001年   278篇
  2000年   215篇
  1999年   169篇
  1998年   157篇
  1997年   185篇
  1996年   176篇
  1995年   189篇
  1994年   178篇
  1993年   178篇
  1992年   142篇
  1991年   131篇
  1990年   125篇
  1989年   126篇
  1988年   12篇
  1987年   16篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   5篇
  1982年   6篇
  1981年   13篇
  1980年   4篇
  1979年   8篇
  1965年   3篇
  1963年   5篇
  1962年   4篇
  1954年   2篇
排序方式: 共有9962条查询结果,搜索用时 578 毫秒
101.
102.
Uranium processing and mining activities that generate many contaminants, such as high concentrations of U (VI), sulfate and heavy metals (Zn, Cu, Ni, etc), may pose a serious threat to the groundwater resources. In recent years, considerable research has been conducted respectively on two kinds of permeable reactive barriers (PRB), including zerovalent iron (ZVI) and sulfate reducing bacteria (SRB), for in-situ removal of these pollutants from groundwater. However, little investigation has been carried out on the potential benefits of bioaugmenting ZVI barriers to enhance the elimination of the pollutants by combining ZVI with SRB systems. The main goal of this study was to conduct batch and column experiments to determine whether the combination of SRB and ZVI can function synergistically and accelerate the rate of pollutant removal. The results of anaerobic batch experiments demonstrated that although the integrated ZVI/PRB system itself has no ability to reduce and remove sulfate directly, SRB can utilize hydrogen gas produced during the slow process of ZVI corrosion as an electron donor to raise biomass yields significantly and accelerate reductive sulfate removal. In particular, ferrous cations produced as the byproduct of ZVI corrosion process reacted with hydrogen sulfide from sulfate reduction and formed iron-bearing sulfide precipitates, which can stimulate the growth of SRB and promote sulfate removal activity by eliminating the biotoxicity of hydrogen sulfide. It was also shown that secondary mineral products (pyrite/ferrous sulfide) formed as a consequence of microbial sulfate reduction and ZVI corrosion process can enhance the microbial precipitation of soluble U (VI) as insoluble uraninite(uranium dioxide).  相似文献   
103.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   
104.
单频GPS接收机天线扼流圈的研制与测试   总被引:2,自引:0,他引:2  
讨论了多路径效应对GPS共视比对的影响及削弱其影响的方法。结合综合原子时项目的需求,研制了适用于单频GPS接收机的天线扼流圈,并用零基线比对方法进行了测试。结果表明,研制的天线扼流圈可有效地削弱多路径效应的影响,并可明显地改善单频GPS接收机NTSCGPS-1的抗干扰能力。  相似文献   
105.
三江平原旱田耕作对湿地土壤理化性质的累积影响初探   总被引:4,自引:5,他引:4  
袁兆华  吕宪国  周嘉 《湿地科学》2006,4(2):133-137
在中国科学院三江平原湿地生态试验站综合实验场,对不同耕作年限的湿地土壤(0~20 cm)进行环境累积效应分析。结果表明,随着开垦时间的增加,土壤的理化性质发生渐变,物理性质方面,土壤容重和比重逐渐增大,而孔隙度和田间持水量逐年减少;化学性质方面,土壤pH值随开垦时间的增加而增加,有机质和其他养分则随开垦时间的增加而逐年降低。弃耕后土壤性质有所恢复。土壤性质在开垦初期变化较明显,而后逐渐变缓。  相似文献   
106.
流域水文模型的研制是水文科学中最重要的分支之一。其中包括集总式和分布式流域水文模型,分布式流域水文模型的种类很多,在我国的研究和应用比较普遍。那棱格勒河是柴达木盆地最大的一条河流,正确评价该河流的水文情况,对开发柴达木盆地盐湖资源具有十分重要的意义。应用分布式流域水文模型理论,对适用于那棱格勒河流域的水文循环动力学模型的类型进行选择,通过分析对比,选择出最适合本地区特殊条件的TOPKAPI模型,以便于探讨该地区水文循环的特点与规律,从而阐明盐湖区各类水体间的相互补给关系。  相似文献   
107.
108.
In polluted aquatic systems, toxic metals are often accumulated in bottom sediments. They are, however, not necessarily stored definitively because diagenetic processs can modify redox, pH and even the amount of complexing ligands, releasing the trace metals back into the pore waters and the water column. Especially the labile metal fraction in the pore waters is important since this is the bioavailable fraction determining the bio-toxicity of the sediments. The goal of our study was therefore to assess, with novel sampling techniques, this bioavailable metal fraction in the pore waters as well as the flux towards the overlying water column. High-resolution profiles of trace metals in pore waters of marine and riverine sediments were assessed by DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) gel techniques. The DET technique uses a diffusive gel layer that equilibrates with the aquatic system and with this technique the concentrations of total dissolved trace metals are obtained directly. The DGT technique uses an acrylamide diffusive gel backed by a resin gel (Chelex) which binds trace metals. With the DGT technique only labile species of selected metals can be captured. According to the redox potential measurements, the marine sediments were suboxic (200 mV to -220 mV versus Ag/AgCl electrode), while the riverine sediments were completely anoxic (-160 mV to -220 mV versus Ag/AgCl electrode). This redox potential was apparently controlling the trace metals species in the pore waters: for example a strong correlation between Mn and Co was found in the riverine sediments (for DET and DGT sampling), while in the marine sediments trace metals presented various behaviors.  相似文献   
109.
In southern Rocky Mountains, catchments characterized by acidic, metalliferous waters that are relatively unaffected by human activity usually occur within areas that have active or historical mining activity. The US Geological Survey has utilized these mineralized but unmined catchments to constrain geochemical processes that control the surface- and ground-water chemistry associated with near surface acid weathering as well as to estimate premining conditions. Study areas include the upper Animas River watershed, Lake City, Mt. Emmons, and Montezuma in Colorado and Questa in New Mexico. Although host-rock lithologies range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous. Variability of metal concentrations in water is caused by two main factors: mineralogy and hydrology. Parameters that potentially affect water chemistry include: host-rock lithology, intensity of hydrothermal alteration, sulfide mineralogy and chemistry, gangue mineralogy, length of flow path, precipitation, evaporation, and redox conditions. Springs and headwater streams have pH values as low as 2.5, sulfate up to 3700 mg/L and high dissolved metal concentrations (for example: Al up to 170 mg/L; Fe up to 250 mg/L; Cu up to 3.5 mg/L and Zn up to 14 mg/L). With the exception of evaporative waters, the lowest pH values and highest Fe and Al concentrations occur in water draining the most intense hydrothermally altered areas consisting of the mineral assemblage quartz-sericite-pyrite. Stream beds tend to be coated with iron floc, and some reaches are underlain by ferricrete. When iron-rich ground water interacts with oxygenated waters in the stream or hyporheic zone, ferrous iron is oxidized to ferric iron, which is less soluble, leading to the precipitation of iron oxyhydroxides.  相似文献   
110.
The Bonnifield district hosts 26 tmmined volcanogenic massive sulfide (VMS) occurrences. Environmental geochemical samples of water and stream sediment were collected at several occurrences, concentrating on the two best-exposed and largest deposits, Red Mountain (RM) and Sheep Creek (SC). Limited samples were also collected at the poorly exposed WTF deposit. The deposits are Late Devonian to Early Mississippian, and are hosted by felsic metavolcanic and carbonaceous schist members of the Totatlanika Schist or Keevy Peak Fm. Spring and stream waters at RM and SC have pH values commonly 〈3.5 (as low as 2.4 at RM and 2.5 at SC), high conductivity (up to 11000 μS/cm), and very high (Is to 100s mg/L) dissolved contents of Al, Cd, Co, Cu, Fe, Ni, and Pb. Waters at RM are characterized by extremely high REE contents (summed REE median 3200 μg/L, n=33). At both RM and SC, pyrite oxidation and dissolution produce low pH waters that interact with and dissolve bedrock minerals, resulting in acidic, metal-laden, naturally degraded streams that are mostly devoid of aquatic life. Ferricrete is common. In contrast, WTF barely produces a surficial environmental footprint, mostly due to topography and relief. RM and SC are well exposed in the areas of relatively high relief, and both exhibit extensive areas of quartz-sericite-pyrite-alteration. While WTF shares many of the same deposit-and alteration characteristics, it is concealed by tundra in a large, nearly flat area. Surface water at WTF is absent and outcrops are sparse. Even though WTF is roughly the same size as Red Mountain (both around 3 million tonnes) and has similar base- and precious-metal grades, the surficial geochemical manifestation of WTF is minimal. However, exposure through mining of the altered, mineralized rock at WTF potentially could initiate the same processes of pyrite oxidation, acid generation, and mineral dissolution that are observed naturally at RM and SC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号