首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2935篇
  免费   506篇
  国内免费   323篇
测绘学   144篇
大气科学   246篇
地球物理   234篇
地质学   2226篇
海洋学   294篇
天文学   63篇
综合类   140篇
自然地理   417篇
  2024年   19篇
  2023年   92篇
  2022年   118篇
  2021年   134篇
  2020年   113篇
  2019年   88篇
  2018年   73篇
  2017年   79篇
  2016年   53篇
  2015年   85篇
  2014年   128篇
  2013年   99篇
  2012年   145篇
  2011年   152篇
  2010年   154篇
  2009年   164篇
  2008年   148篇
  2007年   134篇
  2006年   157篇
  2005年   138篇
  2004年   123篇
  2003年   120篇
  2002年   99篇
  2001年   127篇
  2000年   92篇
  1999年   75篇
  1998年   74篇
  1997年   97篇
  1996年   77篇
  1995年   106篇
  1994年   80篇
  1993年   92篇
  1992年   80篇
  1991年   72篇
  1990年   75篇
  1989年   73篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
  1958年   2篇
  1955年   2篇
  1954年   2篇
排序方式: 共有3764条查询结果,搜索用时 15 毫秒
61.
In southern Rocky Mountains, catchments characterized by acidic, metalliferous waters that are relatively unaffected by human activity usually occur within areas that have active or historical mining activity. The US Geological Survey has utilized these mineralized but unmined catchments to constrain geochemical processes that control the surface- and ground-water chemistry associated with near surface acid weathering as well as to estimate premining conditions. Study areas include the upper Animas River watershed, Lake City, Mt. Emmons, and Montezuma in Colorado and Questa in New Mexico. Although host-rock lithologies range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous. Variability of metal concentrations in water is caused by two main factors: mineralogy and hydrology. Parameters that potentially affect water chemistry include: host-rock lithology, intensity of hydrothermal alteration, sulfide mineralogy and chemistry, gangue mineralogy, length of flow path, precipitation, evaporation, and redox conditions. Springs and headwater streams have pH values as low as 2.5, sulfate up to 3700 mg/L and high dissolved metal concentrations (for example: Al up to 170 mg/L; Fe up to 250 mg/L; Cu up to 3.5 mg/L and Zn up to 14 mg/L). With the exception of evaporative waters, the lowest pH values and highest Fe and Al concentrations occur in water draining the most intense hydrothermally altered areas consisting of the mineral assemblage quartz-sericite-pyrite. Stream beds tend to be coated with iron floc, and some reaches are underlain by ferricrete. When iron-rich ground water interacts with oxygenated waters in the stream or hyporheic zone, ferrous iron is oxidized to ferric iron, which is less soluble, leading to the precipitation of iron oxyhydroxides.  相似文献   
62.
The Bonnifield district hosts 26 tmmined volcanogenic massive sulfide (VMS) occurrences. Environmental geochemical samples of water and stream sediment were collected at several occurrences, concentrating on the two best-exposed and largest deposits, Red Mountain (RM) and Sheep Creek (SC). Limited samples were also collected at the poorly exposed WTF deposit. The deposits are Late Devonian to Early Mississippian, and are hosted by felsic metavolcanic and carbonaceous schist members of the Totatlanika Schist or Keevy Peak Fm. Spring and stream waters at RM and SC have pH values commonly 〈3.5 (as low as 2.4 at RM and 2.5 at SC), high conductivity (up to 11000 μS/cm), and very high (Is to 100s mg/L) dissolved contents of Al, Cd, Co, Cu, Fe, Ni, and Pb. Waters at RM are characterized by extremely high REE contents (summed REE median 3200 μg/L, n=33). At both RM and SC, pyrite oxidation and dissolution produce low pH waters that interact with and dissolve bedrock minerals, resulting in acidic, metal-laden, naturally degraded streams that are mostly devoid of aquatic life. Ferricrete is common. In contrast, WTF barely produces a surficial environmental footprint, mostly due to topography and relief. RM and SC are well exposed in the areas of relatively high relief, and both exhibit extensive areas of quartz-sericite-pyrite-alteration. While WTF shares many of the same deposit-and alteration characteristics, it is concealed by tundra in a large, nearly flat area. Surface water at WTF is absent and outcrops are sparse. Even though WTF is roughly the same size as Red Mountain (both around 3 million tonnes) and has similar base- and precious-metal grades, the surficial geochemical manifestation of WTF is minimal. However, exposure through mining of the altered, mineralized rock at WTF potentially could initiate the same processes of pyrite oxidation, acid generation, and mineral dissolution that are observed naturally at RM and SC.  相似文献   
63.
The mainly 19th Century canal system in the UK, largely managed by British Waterways, has been increasingly brought back into operation over the last few decades, and is now widely used for both leisure, and, increasingly, transport. Both initial and routine dredging of the canal sediment is carried out and these sediments are generally disposed of to land. Because many of the canals were connected with primary industries, their sediments can locally be significantly contaminated with heavy metals, and the behaviour of these metals under differing redox conditions, when introduced into a new environment (i.e., on land) is of importance for environmental risk-assessment purposes. Canal sediments are often rich in sulfidic mineral phases, and we have attempted to quantify the influence of these sulfidic phases on the release and retention of metals in dredged canal sediments, using a combination of traditional chemical techniques (e.g. sequential extraction) and X-ray absorption spectroscopy (XAS). Sediment samples have been collected from urban fresh-water canals, one in the British Midlands and one in Northern France. It appears from XAS that Cd is largely associated with oxygen in air-dried sediment, and with sulphur in vacuum-dried sediment.  相似文献   
64.
Dissolved organic matter (DOM) is an important chemical component in natural water. Chromophoric dissolved organic matter (CDOM), a fraction of optical properties, plays art important role in the biogeochemical cycle of nutrients in aquatic environment. People realized that DOM cycle is crucial in the global carbon and nitrogen flux, and also is inherently related to nutrients and trace metal elements. Therefore, CDOM was concerned by scientists in global oceanography and limnology fields. Water samples were collected from three sections (North Channel, South Channel and Zhuyuan) of the Yangtze (Changjiang River) estuary in March 2006 Three-dimensional excitation emission matrix (3-DEEM) fluorescence spectra were analyzed for those filtrates through Whatman GF/F filters. Dissolved organic carbon (DOC) was also measured by TOC analyzer. The tidal variety was also taken into account. The 3-D EEM fluorescence scans suggested the fluorescence characteristics of humic acid (Ex=332-344 nm, Em=439-451 nm) and fulvic acid (Ex=250-254 nm, Em=472-478 nm) were obvious, and the fluorescence group of protein-like and tyrosine (Ex=230 nm, Em=283 nm) was also found. They are mainly composed of CDOM in the Yangtze estuary. Further data analysis, especially the fluorescence index (f 450/500), showed that terrestrial signal was rather strong (1.41-1.65) in the surface water, however, some terrestrial CDOM signals of bottom water showed excursions (1.28-1.39). On the other hand, anthropogenic sign was impressed in the waters of Zhuyuan, which is one of the main drain outlets of Shanghai Metropolis. DOC concentrations ranged from 2.2 mg/L to 3.4 mg/L in Zhuyuan and South Channel, and from 2.0 mg/L to 2.4 mg/L in North Channel. The tide effect played a role in the composition of the CDOM measured by 3-D fluorescence scan technology.  相似文献   
65.
Photodegradation of chrysene, benzo (a) pyrene and benzo (g, h, i) perylene in natural water of the Yellow River was studied using simulation sunlight. The effects of particulates on the photodegradation were explored. Several results arose from this study. (1) The photodegradation of PAHs can be fitted with first-order kinetics when no particulate exists in water system, and the first-order constant increases with decreasing of initial concentration of PAHs. The photodegradation rates of the three PAHs are related to their molecule absorption spectrum. (2) The existence of loess exerts two kinds of effects on the photodegradation of PAHs, including the inner filter effects and the photosensitizing effects of humic substance in loess. These two contrary effects lead to the difference of net effects among different contents of loess. When the loess contents are 0.1 and 5.0 g/L, the existence of loess stimulates the photodegradation of chrysene, benzo (a) pyrene. When the loess content is 5.0 g/L, the existence of loess stimulates the photodegradation of benzo (g, h, i) perylene. In addition, the photodegradation of PAHs can be fitted with the second-order kinetics when there is loess in the water system. (3) The soluble humic substances in loess can accelerate the photodegradation of PAHs while the in soluble part cannot. (4) Since the soluble humic substances in the suspended solids of the river have been dissolved in water,  相似文献   
66.
吐哈盆地十红滩铀矿床水文地球化学特征   总被引:6,自引:0,他引:6  
本文根据水化学资料的研究,探讨了十红滩铀矿床含矿含水层高矿化度地下水的成因,分析了高矿化度水对铀溶解迁移的影响及碳酸盐的形成机理.  相似文献   
67.
水文信息处理系统是在Windows环境下、用Visual Basic 6.0高级语言研制开发的智能水文资料整编软件,引用数据库存储信息,调用Excel输出整编成果。该软件实现了水位、流量、泥沙等要素关系线的自动生成和人工辅助定线,并完成全部整编计算工作,结束了我国水文资料电算整编工作中依靠手工定线整编的历史,解决了计算机定线、推流和成果输出一次完成的技术难题,真正实现了水文资料整编计算机化。  相似文献   
68.
本文通过对“十五”期间测绘情报工作的回顾,分析了目前测绘情报研究存在的主要问题,讨论了今后测绘情报工作的发展对策。  相似文献   
69.
根据实际业务工作的需要,使用C++Builder可视化开发工具,开发了Windows环境下的河南省农业气象情报资料处理系统,该系统具有报码分析、文本生成和图形显示等功能.  相似文献   
70.
图书、情报、档案信息一体化管理的探讨   总被引:1,自引:0,他引:1  
图书、情报、档案信息一体化是一个单位或一个部门对图书、情报、档案等各种信息实行一体化管理,使之形成"三位一体"紧密结合机制,从而更好地为科研、生产和管理服务.其具体含义有两层:一是对图书、情报、档案工作(包括各项业务工作流程、人员、库房、设备、制度等)进行统筹规划和整体建设;二是对图书、情报、档案等各种信息进行联合开发,使之成为一个在分工合作的基础上,相互补充、高效快速、开放型的统一体,实现行业、部门在更大范围、更高层次的资源共享.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号