首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7865篇
  免费   1308篇
  国内免费   1268篇
测绘学   540篇
大气科学   2846篇
地球物理   686篇
地质学   3727篇
海洋学   628篇
天文学   6篇
综合类   679篇
自然地理   1329篇
  2024年   54篇
  2023年   260篇
  2022年   346篇
  2021年   344篇
  2020年   278篇
  2019年   305篇
  2018年   210篇
  2017年   218篇
  2016年   217篇
  2015年   277篇
  2014年   507篇
  2013年   376篇
  2012年   457篇
  2011年   458篇
  2010年   482篇
  2009年   459篇
  2008年   407篇
  2007年   400篇
  2006年   429篇
  2005年   386篇
  2004年   353篇
  2003年   345篇
  2002年   278篇
  2001年   346篇
  2000年   241篇
  1999年   225篇
  1998年   215篇
  1997年   212篇
  1996年   179篇
  1995年   212篇
  1994年   205篇
  1993年   175篇
  1992年   152篇
  1991年   136篇
  1990年   131篇
  1989年   110篇
  1988年   11篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   8篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1965年   1篇
  1958年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
大理州2005年初夏出现了严重干旱气象事件.从500pHa高空环流特征、500pHa距平场特征、西太平洋副高特征量及北太平洋中低纬海温距平场、OLR距平场对这次干旱的成因进行了分析,分析结果表明:2005年初夏(4月1日~6月10日)降水异常偏少气温明显偏高是发生干旱的主要原因,高空大气环流异常、西太平洋副高持续偏强偏西、冷空气活动偏北是导致干旱的直接原因;孟加拉湾南部4月OLR场呈明显正距平,抑制低值系统的发展和东北移影响云南,是影响2005年大理初夏干旱重要原因;北太平洋中低纬海温特征与大理州初夏干旱有一定的遥相关性.  相似文献   
82.
《地下水》2006,28(4):F0004-F0004
陕西省水工程勘察规划研究院始建于一九四九年。长期以来承担着全省地下水监测研究、地下水盗源调查评价、地下水开发利用规划、钻井技术设备研究、科技推广等专业按术工作和机井工程建设监督、质量管理,钻井施工资质管理等行业技术管理工作。具有国家甲级水文水资源调查评价、建设项目水资源论证、水文地质勘察、岩土工程资质.  相似文献   
83.
水文地质学作为与国民经济发展密切相关的应用学科,在世界各国水资源调查、保护和管理方面发挥着重要的支撑作用。2006年是国际水文地质学家协会(IAH)成立五十周年。因此,2006年10月09日-2006年10月13日国际水文地质学家协会和中国国土资源部将在北京市联合举办“第34届国际水文地质大会”。这将是继1988年中国在桂林市成功举办“第21届国际水文地质大会”之后,再次在中国举办国际水文地质大会。  相似文献   
84.
美国西南干旱半干旱地区人口增长非常快。水不仅要满足基本的需求(饮用水、污水系统等),而且还要维持乡村潮湿地区生活方式的改变(郊区的草地、高尔夫球场、庭院的游泳池等)。这些水的使用,既能满足供水系统所在区域地表水供水的需求,又可以满足最基本的地下水开采。然而,地下水的开采对沉积含水层有不利的影响,这些含水层是特有的沙漠区地下水流域的承载。这些影响包括含水层不同程度的压实、旧断层的重新复活、地表的裂缝,还能对人为的基础设施有相当大的影响。  相似文献   
85.
The purpose of the thesis is to analyze the temporal and dimensional distribution of sulfate-reducing bacteria (SRB) groups and quantity in Lake Erhai. In April and September 2005, two sediment cores were collected from Lake Erhai. SRB groups were analyzed by PCR with six-groups primers designed according to the specific 16SrDNA sequence. FISH (fluorescence in-situ hybridization) was established with the oligonucleotide probe (SRB385) and utilized to analyze SRB quantity in the sediments. The results showed that in the sediments of Lake Erhai four SRB groups were detected except Desulfobacterium and Desulfobacter, meanwhile Desulfovibrio-Desulfomicrobium were detected only in autumn; different SRB groups had different temporal and dimensional distribution, and each group in autumn is distributed more widely than in spring; FISH used to count SRB in the sediments of fresh lake was set up successfully; the analysis of correlation between the sediment's depth and SRB quantity had statistical meaning (P〈0.05) . The result showed that SRB quantity showed a decreasing trend with increasing depth. Through the analysis of randomized block designed analysis of variance, the difference in SRB quantity between spring and autumn also had statistical meaning (P〈0.001), which revealed SRB quantity in autumn was larger than in spring; the result of FISH showed that there were some SRB in the deeper sediments in which no above-mentioned six SRB groups were detected by PCR. SRB groups in the sediments of Lake Erhai were rich, and the quantities of SRB groups in autumn were larger than in spring; possibly there were uncultivable SRB groups in the sediments of Lake Erhai.  相似文献   
86.
Arsenic is one of the most important single-substance toxicants in the environment. In Inner Mongolia of China, 300000 residents are believed to drink water containing 〉50 μg/L. Skin lesions have been known as the most common consequences resulting from chronic exposure to arsenic. To clarify the prevalence of arsenic-induced skin lesions, it is important to assess the impact of this problem on the target population, and to make future planning. We evaluated the association between multi-level inorganic arsenic exposure from drinking water and skin lesions in an arsenic-affected area in Inner Mongolia, China. 109 and 32 subjects fi'om high-level arsenic-affected (〉5 μg/L) village and low-level (≤50 μg/L) village were recruited and had detailed physical examination with special emphasis on arsenic-related skin lesions. Arsenic exposure was measured for each participant with As concentration of primary well and the duration of using the well was recorded. Arsenic-induced skin lesions including keratosis, pigmentation, and/or leucomelanosis were diagnosed in 56 and 3 subjects in the two villages, respectively. Logistic regression was conducted to calculate prevalence-odd ratios of skin lesions by levels of arsenic exposure with adjustment of sex, age group, smoking and duration of exposure. A consistent dose-response relationship between arsenic exposure level and skin lesion risk was observed.  相似文献   
87.
Biological iron and manganese removal utilizing indigenous iron and manganese oxidizing bacteria (IRB hereafter) in groundwater can also be applied to arsenic removal according to our pilot-scale test. The arsenic removal probably occurred through sorption and complexation of arsenic to iron and manganese oxides formed by enzymic action of IRB. We investigated the chemical properties of iron and manganese oxides in IRB floc and the valence state of arsenic sorbed to the floc to clarify the mechanisms of the arsenic [especially As (Ⅲ)] removal. The floc samples were collected from two drinking water plants using IRB (Jyoyo and Yamatokoriyama, Japan), and our pilot - scale test site where arsenic and iron removal using IRB is under way (Mukoh, Japan). The Jyoyo and Yamatokoriyama IRB floc samples were subjected to As (Ⅲ) and As(Ⅴ) sorption experiments. The elemental composition of the floc samples was measured. XANES spectra were collected on As, Fe and Mn K-edges at synchrotron radiation facility Spring 8 (Hyogo, Japan). FT-IR and the X-ray diffraction spectra of the samples were also obtained. The IRB floc contained ca. 35 % Fe, 0.3%-3.5% Mn and 2%-6% P. The samples were highly amorphous and contained ferrihidrites and hydrated iron phosphate. According to XANES analyses of IRB, As associated with IRB was in +5 valence state when As (Ⅲ) (or As (Ⅴ)) was added in laboratory sorption test, Fe in +3 valence state, and Mn a mixture of+3 and +4 valence states. Small shift was observed in the XANES spectra of IRB on As K-edge as the equilibration time of the sorption experiment was increased. Gradual oxidation of a small amount of As (Ⅲ) associated with IRB or change in arsenic binding with sorption site were the probable mechanism.  相似文献   
88.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
89.
Uranium processing and mining activities that generate many contaminants, such as high concentrations of U (VI), sulfate and heavy metals (Zn, Cu, Ni, etc), may pose a serious threat to the groundwater resources. In recent years, considerable research has been conducted respectively on two kinds of permeable reactive barriers (PRB), including zerovalent iron (ZVI) and sulfate reducing bacteria (SRB), for in-situ removal of these pollutants from groundwater. However, little investigation has been carried out on the potential benefits of bioaugmenting ZVI barriers to enhance the elimination of the pollutants by combining ZVI with SRB systems. The main goal of this study was to conduct batch and column experiments to determine whether the combination of SRB and ZVI can function synergistically and accelerate the rate of pollutant removal. The results of anaerobic batch experiments demonstrated that although the integrated ZVI/PRB system itself has no ability to reduce and remove sulfate directly, SRB can utilize hydrogen gas produced during the slow process of ZVI corrosion as an electron donor to raise biomass yields significantly and accelerate reductive sulfate removal. In particular, ferrous cations produced as the byproduct of ZVI corrosion process reacted with hydrogen sulfide from sulfate reduction and formed iron-bearing sulfide precipitates, which can stimulate the growth of SRB and promote sulfate removal activity by eliminating the biotoxicity of hydrogen sulfide. It was also shown that secondary mineral products (pyrite/ferrous sulfide) formed as a consequence of microbial sulfate reduction and ZVI corrosion process can enhance the microbial precipitation of soluble U (VI) as insoluble uraninite(uranium dioxide).  相似文献   
90.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号