首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   53篇
  国内免费   24篇
测绘学   31篇
大气科学   35篇
地球物理   10篇
地质学   96篇
海洋学   1篇
综合类   10篇
自然地理   76篇
  2024年   5篇
  2023年   20篇
  2022年   19篇
  2021年   23篇
  2020年   13篇
  2019年   17篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   11篇
  2012年   13篇
  2011年   23篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
91.
ETWatch中的参数标定方法   总被引:1,自引:2,他引:1  
使用遥感手段估算区域范围的蒸散量一直是热红外定量遥感的研究热点。ETWatch是用于流域蒸散遥感监测、针对遥感应用而设计的集成框架。方法集成了具有不同应用优势的遥感蒸散模型,并以Penman-Monteith方法为基础建立时间扩展方法,利用气象数据与晴好日的通量遥感估算结果,获得逐日连续的蒸散分布图。所生成的从流域级到地块级的数据产品能动态反映区域蒸散发的时空变化规律。为深入了解遥感蒸散量估算中的不确定因素,本文将其通量计算过程分为地表参数获取(以地表温度为主)、日净辐射、蒸发比等环节与地面数据进行对比和逐项的标定。并分别采用地表阻抗扩展法和蒸发比不变法进行了时间插补的对比研究。利用站点地面观测资料对蒸散遥感监测产品的验证表明,在全年内模型蒸发比结果与实测的时段平均蒸发比的相关系数可达到0.7左右,在更长的时间尺度上(月、季、年)平均百分比误差可以减小到10%以下。  相似文献   
92.
黄河源区蒸散发量时空变化趋势及突变分析   总被引:3,自引:1,他引:3  
散发量是流域水文过程的关键因子。由于缺乏区域面上实际蒸散发量的长期观测,很难得到长时间序列的蒸散发时空变化趋势。因此,本研究首先利用架设在黄河源若尔盖地区的涡动相关系统观测的2010年全年的蒸散发资料进行分析,对欧洲中心提供的ERA-interim和美国国家环境预报中心(NCEP)提供的地表变量再分析数据集进行了局地适用性评估,并依据再分析蒸散数据集,基于统计学方法分析了1979~2014年黄河源区蒸散发量的时空分布及变化特征。结果表明:(1)ERA-interim蒸散发再分析资料在黄河源区适用性较好,均方根误差为0.63,NCEP蒸散发再分析资料在4~7月、10~12月模拟值偏高,均方根误差为0.81。(2)进而利用ERA-interim蒸散发再分析资料,基于Mann Kendall方法及Sen斜率(Sen’s slope estimator)检验法,分析了黄河源区蒸散发量在1979~2014年期间的变化趋势。黄河源区蒸散发量总体上呈现北高南低的年变化趋势,北部兴海—共和—贵德地区增加最为迅速,年变化率在1.5~2.5 mm/a,西南部曲麻莱—治多—玉树地区减少最为明显,变化率为-1.0~-0.5 mm/a,东南部玛沁—玛曲—久治地区蒸散发量的变化在0.5~1.0 mm/a。(3)利用滑动t检验和SQMK(Sequential Mann Kendall)方法检测出发生突变的年份集中在20世纪80年代。  相似文献   
93.
黑河上中游潜在蒸散发模拟及变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于多源遥感数据产品,利用Shuttleworth-Wallace(S-W)模型估算了黑河上中游流域2000—2010年潜在蒸散发(potential evapotranspiration,ETP),并考虑不同土地覆被类型,分析了ETP的时空变化特征及影响要素,分别利用ETPET0驱动水文模型,比较径流模拟精度.结果表明:① 基于高精度遥感数据,S-W模型可模拟区域ETP.黑河上中游流域,夏季ETP对年值的贡献最大,各土地覆被类型的ETP年内变化趋势一致.总体而言,植被条件越好,ETP越小;② 在研究区内,相对湿度对ETP变化的影响最大,叶面积指数(LAI)对ETP变化的影响与辐射相近.植被越稀疏,ETP对气象要素及LAI的敏感性越强;③ 与ET0相比,ETP能够更好地描述陆面蒸散发能力,相同条件下使用ETP驱动水文模型模拟精度更高.  相似文献   
94.
广东实际蒸散发与潜在蒸散发的关系研究   总被引:1,自引:0,他引:1  
利用广东86个气象站1961-2008年的观测资料,采用高桥浩一郎经验公式、Penman公式分别计算了广东省6个子区域1961-2008年实际蒸散发(Actual Evapotranspiration)Ea和潜在蒸散发(Potential Evapotranspiration)Ep,并定量化分析了供水条件变化下Ea与Ep的关系,对它们的理论从属性进行了判定。结果表明,广东省年实际蒸散发量远低于潜在蒸散发量,全省平均Ea为791.0 mm/a,Ep为1 034.1 mm/a,多数子区域Ea不足Ep的3/4,Ea的变异性明显高于Ep。随降水量R的增加,粤东沿海、珠三角、粤北、粤中、粤西南5个子区域Ea增加趋势明显,粤东Ea随R的变化趋势不明显;除粤东外,各子区域的Ep与降水量呈显著负相关关系;随着R的增加,全省平均Ea呈明显的增加趋势,Ep则呈明显的下降趋势。通过对降水量R与实际蒸散发Ea、潜在蒸散发Ep的联合回归方程R-E回归系数的T检验,判定粤东沿海、珠三角、粤北、粤中、粤西南5个子区域Ea与R和Ep与R的关系满足理论意义上的完全互补相关;粤东Ea与R和Ep与R关系不明确。  相似文献   
95.
提出三温模型结合MODIS数据反演区域蒸散发的方法,在内蒙古草原开展案例研究,以2008年植被生长季(7—10月)的波文比系统观测数据为标准,对该方法进行检验。结果表明:三温模型反演的蒸散发量,平均值、最大、最小值分别为4.58mm/d、9.03mm/d、1.28mm/d;蒸散发反演结果在空间上分布较均匀,与草原的均一性相吻合,在时间上蒸散发的数值先逐渐增大,8月后逐渐减小,与观测结果相一致;三温模型反演的蒸散发量与观测值之间的最小、最大绝对误差分别为0.11mm/d、1.64mm/d,平均绝对误差为0.58mm/d、平均相对误差为17.10%。三温模型在1km空间尺度的反演精度较理想。  相似文献   
96.
用卫星遥感热红外数据估算大面积蒸散量   总被引:10,自引:6,他引:10       下载免费PDF全文
陈鸣  潘之棣 《水科学进展》1994,5(2):126-133
从能量平衡方程出发,将试验场实测地表热红外温度及各项气象要素,用冠、气温度差方法,求得局部地区的蒸散量;进而与卫星热红外温度数据相配合,估算大面积作物的蒸散发和蒸散量分布。经验证,该方法的研究结果与实测值有较好的相似性.  相似文献   
97.
张家口承德地区是京津冀城市群生态安全的重要屏障,针对该地区长时间序列实际蒸散的时空变化研究较少,以张家口承德地区为研究区,基于表面能量平衡模型(SEBS)结合MODIS和GLDAS数据反演了研究区2001年1月—2020年12月逐月的蒸散量,将反演结果与MOD16A2数据在趋势上进行了对比,并用2021年7月的野外实测数据在像元尺度上对其进行验证,利用Sen+MannKendall显著性检验方法对其时空趋势变化进行了分析,用相关性分析研究了其影响因素。结果表明:模型蒸散量反演结果与MOD16A2数据在月尺度上相关性良好,与野外实测数据的相对误差小于15%,具有较高的可靠性;研究区的年蒸散量在20 a间呈现波动上升趋势,最大值为2013年的545 mm,最小值为2002年的348 mm,且承德地区的蒸散量明显高于张家口地区;20 a间研究区75.41%的区域蒸散量基本稳定不变,5.13%的区域蒸散量增加,1.11%的区域蒸散量显著降低,18.35%的区域蒸散量轻微降低;气温、植被对蒸散量的影响具有显著的正相关性,不同土地用地类型下蒸散量由高到低的顺序为:林地>水体>草地>耕地>建设用地>未利用土地。  相似文献   
98.
流域内水循环各环节的水量及其时空分布是不断变化的,掌握流域水循环与水平衡状况是进行流域水资源合理开发利用的重要基础。以2000—2019年黑河流域水文显著变化期为研究时段,综合应用TRMM与GPM卫星观测的降水量、遥感估算的蒸散发量等数据并结合气象站点、水文站点等观测数据,对流域降水、蒸散发与径流等水循环要素的水平衡进行了分析。结果表明:祁连山区是主要产流区,向中游年均下泄水量约为45.11×108 m3。其中,消耗于中游的年均量约为29.92×108 m3,约占66%;补充下游的年均量约为15.19×108 m3,约占34%。民乐—张掖盆地是黑河中游水资源消耗的主要区域,年均消耗的上游来水和当地降水量达43.97×108 m3,约占中游消耗量的75%;中游农田蒸散发年均消耗水量约20.3×108 m3,占总消耗量的35%;上游区降水量增加是黑河干流出山口径流量增加的主因,对径流量增加的贡献率为96%,导致年均径流增加0.35×108 m3,潜在蒸散发对径流增加几乎没有贡献。根据目前黑河干流上游径流量变化与中游水资源消耗现状,如果未来水文周期变化导致上游径流减少,中下游用水矛盾凸显的风险较大。地表水循环遥感观测可作为流域水平衡分析的方法之一,分析流域地表水水资源的空间分布状况、揭示水资源变化趋势与原因,支撑水资源合理配置,陆面实际蒸散发是水平衡分析不确定性的主要来源,准确估测不同类型下垫面实际蒸散发量是提升分析可靠性的关键。基于互补相关的陆面实际蒸散发估算方法相对简单,但其中用于计算湿环境蒸散发量的Priestley-Taylor公式中乘性经验系数受地形影响空间变异很大,区域上采用统一数值会对结果造成不可忽视的影响。  相似文献   
99.
为揭示城市蒸散发特征,采用考虑人为热影响的SEBS-Urban模型计算天津平原区2015—2017年逐月蒸散量。使用两步验证法对结果进行检验,首先利用MODIS MOD16产品对非建成区模拟结果合理性进行验证,其次利用城市耗水(UWD)模型得到的天津大学卫津路校区月蒸散量对建成区模拟结果验证。在SEBS-Urban模拟结果基础上,检验Budyko方程在城市化地区的适用性。结果表明:① SEBS-Urban模型精度可靠,体现了蒸散发项在城市地表能量平衡与二元水循环中的相合性;②人为热或社会侧的耗水会导致蒸散发量增加,建成区增幅达85%~115%,整个研究区增幅为7.2%~8.7%;③ Budyko方程在研究区具有较好的拟合效果,可应用于城市地区。本研究成果可为城市化地区蒸散发研究提供必要的参考。  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号