首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   174篇
  国内免费   131篇
测绘学   3篇
大气科学   44篇
地球物理   337篇
地质学   189篇
海洋学   62篇
天文学   7篇
综合类   12篇
自然地理   12篇
  2024年   7篇
  2023年   17篇
  2022年   23篇
  2021年   21篇
  2020年   25篇
  2019年   23篇
  2018年   25篇
  2017年   7篇
  2016年   15篇
  2015年   18篇
  2014年   38篇
  2013年   18篇
  2012年   31篇
  2011年   17篇
  2010年   21篇
  2009年   29篇
  2008年   23篇
  2007年   23篇
  2006年   15篇
  2005年   25篇
  2004年   25篇
  2003年   28篇
  2002年   19篇
  2001年   22篇
  2000年   19篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   4篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1964年   2篇
  1954年   3篇
排序方式: 共有666条查询结果,搜索用时 31 毫秒
121.
真三轴试验中的端部摩擦效应分析   总被引:3,自引:0,他引:3  
石露  李小春 《岩土力学》2009,30(4):1159-1164
端部摩擦效应是三轴试验的常见问题之一。相对于常规三轴试验,由于在茂木式真三轴试验中方形试样4个端部需设置两对端部垫块,从而导致端部摩擦问题更加突出。运用FLAC3D,针对Mohr-Coulomb材料,即无中间主应力影响材料,模拟真三轴加载过程中端部摩擦对试样强度和变形行为的影响。计算结果表明,端部摩擦也可以产生虚假中间主应力效应,即使对于无中间主应力效应材料,中间主应力也会导致最大破坏主应力的增加,且摩擦系数越大,这种趋势则越明显。分析了端部摩擦产生这种趋势的原因,指出了真三轴试验中减小端部摩擦的重要性。  相似文献   
122.
为提高钻进效率,合理利用钻进过程中产生的热量,本文采用摩擦热能辅助机械能碎岩(简称:热-机碎岩)的方法,将氮化硅作为摩擦元件引入孕镶金刚石钻头中,以提高钻头工作层的钻进性能。本文通过对钻头水口、摩擦元件的尺寸计算,钻头胎体、结构的设计,制造了一种新型热-机碎岩孕镶金刚石钻头(简称:热-机碎岩钻头),并与常规六水口钻头和三水口钻头开展了室内钻进试验对比。结果表明,与六水口钻头和三水口钻头相比,热-机碎岩钻头加入摩擦元件后能够因摩擦生热而使岩石产生弱化作用,钻头钻速提高,在相同钻井液流量下最高可比六水口钻头的机械钻速高33.3%。热-机碎岩钻头胎体的磨损程度比三水口钻头小,热-机碎岩钻头可用于强研磨性地层的钻进。  相似文献   
123.
土工膜是工程防渗处理的一种主要材料[1]。斜坡面上土工膜与结构面的抗滑稳定直接影响到工程的安全运行。摩擦试验模拟了现场施工和运行情况,得到土工膜与结构面的抗滑剪力和摩擦系数,对工程的安全进行了论证。  相似文献   
124.
应用离子渗氮与离子渗硫技术,在钻杆接头材料35CrMo钢表面制备了硫氮复合处理层。采用M-200环块磨损试验机,对比研究了原始渗氮表面与硫氮复合表面在干摩擦条件下的抗磨损性能。结果表明,在干摩擦的条件下,由于摩擦副的接触表面缺乏润滑,硬度较高的渗氮层会加剧接触表面的磨损。而硫氮复合处理层由于在表面存在一层硫化亚铁固体润滑层,在磨损过程中可以起到一定的润滑作用,因此其在干摩擦条件下具备更好的抗磨损性能。  相似文献   
125.
胡岩 《地球物理学报》2022,65(2):417-426

楔形体理论研究楔形体在底部摩擦力、重力和边界外力共同作用下内部的应力状态,有助于我们定量分析断层强度和岩石性质与楔形体稳定状态之间的关系.本文首先简要介绍基于不同楔形体材料而得出的应力解析解.然后介绍基于理想弹塑性材料的俯冲带库仑楔应力解析解.最后介绍基于该解析解而提出的动态库仑楔形体理论.俯冲带地震反射剖面数据表明,弧前靠近海沟部分地表坡度比较陡,其内部经历复杂永久塑性变形(称为外部楔形体,outer wedge).而靠近内陆部分地表坡度比较平缓,反射剖面显示沉积层呈水平规则分布,常伴随沉积盆地(称为内部楔形体,inner wedge).动态库仑楔形体理论认为弧前这种地表形态和内部构造特征的不同,可能反映了断层面摩擦性质的差异性.内部楔形体对应于断层面上的生震带,在地震周期可能主要经历弹性变形.而外部楔形体对应于断层面上的无震蠕滑部分,在地震发生时可能产生塑性破坏、永久变形.

  相似文献   
126.
断层面摩擦强度是评价煤炭开采中应力扰动诱发断层滑动危险性的依据。依托晋城矿区成庄井田,采用理论分析和数值模拟计算方法,分析了断层面摩擦强度对深部地应力的约束机制,研究了成庄井田F13断层及其在不同摩擦强度条件下对回采工作面顶板稳定性、超前支承压力分布和断层滑动的影响规律。研究结果表明:地壳深部最大与最小主应力比值受断层面摩擦强度的限制,当其达到临界方向断层的摩擦强度极限时,断层就会发生滑动;断层破碎带的存在导致初始应力场扰动,形成断层带低应力区及高应力集中区,在回采过程中将直接影响煤层顶板移动变形和采动应力分布;断层面摩擦强度较小时,工作面开采至断层附近顶板下沉量及断层上下盘错动位移较大,支承压力峰值由大变小明显,断层面上剪应力与正应力的比值易达到断层面的摩擦系数,断层滑动的危险性较大。  相似文献   
127.
断层自发破裂动力过程的有限单元法模拟   总被引:7,自引:7,他引:0       下载免费PDF全文
断层自发破裂动力过程的研究对于认识地震过程及减轻地震灾害有着重要的科学意义.为合理地模拟断层的自发破裂过程,本文首先对经典的滑移弱化摩擦关系进行了改进,然后利用有限单元方法对破裂过程进行动态数值模拟.模拟结果表明,利用改进后的摩擦关系能够产生脉冲型(pulse-like)破裂模式,而经典的滑移弱化摩擦关系不能产生这种破裂形态.模拟结果还显示,断层自发破裂过程受初始应力场及摩擦关系影响,当初始应力场中剪应力水平较低时,容易产生脉冲型破裂;但当初始剪应力较高时,会产生裂纹型(crack-like)破裂.这个现象与在实验室里进行的岩石破裂实验结果是一致的.在相同的初始应力情况下,若滑移弱化摩擦本构关系中的动摩擦系数较大,断层将易于产生脉冲型破裂;若动摩擦系数较小,将倾向于产生裂纹型破裂.此外,本文也采用速率弱化摩擦关系对断层自发破裂过程进行了模拟,结果发现,在初始场及其他条件不变时,如果摩擦关系中的b-a值较小,容易产生脉冲型破裂;如果b-a值较大,会产生裂纹型破裂.  相似文献   
128.
断层阶区对震源破裂传播过程的控制作用研究   总被引:4,自引:4,他引:0       下载免费PDF全文
袁杰  朱守彪 《地球物理学报》2014,57(5):1510-1521
地震破裂能否穿越断层阶区(stepover)引发更大震级的地震是震源动力学研究的重要内容.本文利用不连续变形体接触力学的动态有限单元方法,模拟断层阶区对地震破裂传播的控制作用.通过改变断层周边初始应力场、断层面上的摩擦本构关系以及断层阶区的间距大小来分析各个因素对破裂传播的影响,并定量分析产生这些影响的力学机制.模拟结果表明:断层面上的摩擦系数减小或断层周边区域内的初始剪应力增大,都将增加断层破裂跳跃阶区传播的可能性;此外,若断层阶区间距越小,断层破裂也越容易跳跃阶区传播.计算结果还显示:断层上的摩擦系数大、初始剪应力小、断层阶区间隔大,那么此阶区所在之处将可能是断层破裂的终止位置;相反,当断层面上的摩擦系数较小、初始剪应力较大、断层阶区间隔较小,破裂就容易穿越阶区而出现较大的地震.同时,从模拟结果可以看出,在发震断层破裂停止后,应力将继续向四周传播;当应力积累达到破裂极限时,触发断层阶区中的另一断层产生破裂,因此在破裂跳跃断层阶区的过程中存在一个时间延迟.最后,破裂能否跳跃断层阶区,可以利用库仑应力在空间的分布进行合理的解释.  相似文献   
129.
提出利用筒中筒结构内筒和外筒的相对运动带动耗能装置耗能的的筒中筒结构内部摩擦连接消能减震体系。该体系将结构的内筒和框筒用专门设计的摩擦连接装置连接,罕遇地震下摩擦连接装置滑移产生滞回耗能。文中阐明了该体系的消能减震原理和构造特点,并通过对一栋40层筒中筒结构进行有限元分析,验证了该体系具有良好的抗震性能,可供工程实践参考。  相似文献   
130.
摩擦耗能器的类型与性能及其在实际工程中的应用   总被引:2,自引:0,他引:2  
摩擦耗能器是一种构造简单、耗能机理明确、耗能能力大且性能稳定的耗能减震装置,在实际工程中已得到较为广泛的应用.主要介绍不同类型摩擦耗能器的构造与性能及其在实际工程中的应用,并提出了摩擦耗能器在开发与应用中需进一步研究解决的问题.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号