全文获取类型
收费全文 | 62篇 |
免费 | 5篇 |
国内免费 | 126篇 |
专业分类
地质学 | 170篇 |
海洋学 | 14篇 |
综合类 | 8篇 |
自然地理 | 1篇 |
出版年
2024年 | 2篇 |
2023年 | 9篇 |
2022年 | 7篇 |
2021年 | 8篇 |
2020年 | 9篇 |
2019年 | 8篇 |
2018年 | 5篇 |
2017年 | 5篇 |
2016年 | 3篇 |
2015年 | 8篇 |
2014年 | 15篇 |
2013年 | 11篇 |
2012年 | 15篇 |
2011年 | 14篇 |
2010年 | 13篇 |
2009年 | 14篇 |
2008年 | 14篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 4篇 |
2003年 | 1篇 |
2002年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有193条查询结果,搜索用时 161 毫秒
21.
碱消解-高效液相色谱-电感耦合等离子体质谱法测定生物样品中的甲基汞和乙基汞 总被引:5,自引:2,他引:5
建立了碱消解-高效液相色谱-电感耦合等离子体质谱联用系统测定生物样品中甲基汞(MeHg)与乙基汞(EtHg)的分析方法。为提高灵敏度,选用微流量的PFA雾化器,在优化的检测条件下,MeHg及EtHg检出限可达到0.036μg/L和0.03μg/L;线性范围达到4个数量级,两条工作曲线线性相关系数为1。对1.78μg/L MeHg、1.65μg/L EtHg的混合标准溶液重复测定7次,色谱峰面积的相对标准偏差(RSD)分别为1.79%和1.44%。对标准物质BCR 464(金枪鱼)的分析结果表明,测定值与标准值基本吻合,但略低于标准值;甲基汞和乙基汞的加标回收率分别为85.9%和84.5%。高效液相色谱与质谱联用技术的高灵敏度和低检出限能够满足生物样品中汞形态定量分析的要求。 相似文献
22.
硼(B)是一个质量较轻的流体活动性元素。它有2个稳定同位素:10B和11B,两者之间相对质量差较大,导致自然界显著的硼同位素分馏。因此,硼同位素作为强有力的非传统稳定同位素示踪工具,在化学、环境、生物、地球及行星科学等研究领域具有广泛的应用。近二十年来,国内外硼同位素分析测试技术不断改进并取得了诸多重要进展。然而,获取高质量硼同位素数据,在样品消解、分离纯化以及质谱测试三个主要环节中仍然存在很多挑战。因为硼具有易挥发性及其在不同pH值环境中因配位不同导致同位素分馏,样品消解和分离纯化对硼同位素准确测量有很大影响。样品消解法主要有高温水解法、酸溶法、碱熔法和灰化法,其中酸溶法与碱熔法是最常用的方法。分离纯化法主要包括离子交换法、硼酸甲酯蒸馏法和微升华法。这些样品前处理方法各有利弊。质谱测试方法主要有两类:一类是溶液法,即热电离质谱法(TIMS)或多接收电感耦合等离子体质谱法(MC-ICP-MS);另一类是微区原位分析法,即二次离子质谱法(SIMS)或激光剥蚀法(LA)-MC-ICP-MS。不同的测试方法对样品前处理要求不同:溶液法要求去除基质;微区原位分析法要求样品与标样的成分匹配。这些测试方法也存在不同技术挑战:TIMS分析过程中容易产生同位素分馏。而SIMS和LA-MC-ICP-MS分析过程中存在缺少标准样品、样品表面污染、低含量样品精度有限及高含量样品重现性差等问题。基于MC-ICP-MS测量低含量样品中硼同位素的独特优势,本文深入探讨了基体效应、记忆效应和质量歧视效应三方面的现存挑战,通过梳理文献和数据对比,在总结现有硼同位素地球化学研究方法的基础上提出一些分析测试技术发展方向的建议。 相似文献
23.
24.
微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬 总被引:1,自引:0,他引:1
定量分析煤灰中Cr(Ⅵ)含量对于控制煤炭燃烧过程中产生的高毒性Cr(Ⅵ)的排放具有重要意义。现有的Cr(Ⅵ)定量分析方法主要是针对水、土壤、固体废弃物中的高浓度Cr(Ⅵ),前处理方法耗时长,检出限较高,不能有效测定煤灰中的低浓度Cr(Ⅵ)含量,因此有必要建立便捷、有效的煤灰中Cr(Ⅵ)高灵敏度检测方法。本文采用碱性提取剂,使用微波消解仪对煤灰进行前处理,对样品量、微波消解时间、微波消解温度等微波消解条件进行了优化,通过共沉淀法分离消解液中的Cr(Ⅲ)与Cr(Ⅵ),应用电感耦合等离子体发射光谱法测定Cr(Ⅵ)含量。结果表明,当样品量为0.2 g,微波消解温度为90℃,消解时间为60 min时能够保证煤灰中Cr(Ⅵ)的完全提取及准确测定。方法检出限为0.00033μg/m L,测定下限为0.00134μg/m L,实际样品的加标回收率平均值为87.2%。传统的二苯卡巴肼-紫外分光光度法的检出限为0.001μg/m L。与传统方法相比,本方法检出限降低,提高了检测灵敏度。 相似文献
25.
分别采用HNO3-HF、HNO3-HF-HCl和HNO3-HF-H2O2三种消解体系,通过微波和PTFE密封罐电热板对土壤标准物质进行前处理,采用电感耦合等离子体质谱(ICP-MS)对样品中的重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb进行定量分析。探讨了前处理试剂(主要为HNO3、HCl和HF)以及土壤基体效应对Cr、Ni、Cu、Zn、As、Cd和Pb定量分析的影响。研究结果表明,前处理试剂对Cr、Ni、Cu、Zn、As、Cd和Pb的定量分析具有不同程度的影响;对于土壤基体,在三种消解体系下均可观察到基体抑制效应;采用PTFE密封罐电热板消解方法前处理,待测元素及相同元素不同同位素的方法空白和检出限均较低,效果整体优于微波消解法。特别是HNO3-HF-HCl消解体系,通过选用52Cr、60Ni、65Cu、66Zn、75As和206Pb等同位素,重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb的测定值均能保证在标准值的允许误差范围内,可以满足大批量土壤样品中重金属元素同时定量分析的需要,为高效准确地开展土壤的风险评估以及为土壤的修复治理提供科学依据。 相似文献
26.
利用电感耦合等离子体质谱法(ICP-MS)测定植物样品中微量元素的关键技术是消除植物样品的有机基体效应,本文通过预处理方法中的酸消解体系、称样量和消解方式消除其影响。以国家标准物质灌木枝叶组合样(GBW07603)为材料进行研究,对比分析了硝酸-过氧化氢、硝酸-氢氟酸、硝酸-氢氟酸-过氧化氢3种酸溶体系的消解效果,以确定最佳酸溶体系,进而定量研究2种称样量(50 mg和100 mg)和3种消解方式(密封高压二次消解、密封高压一次消解、微波消解)的消解效果,并以In作为内标采用ICP-MS测定微量元素含量。结果表明:硝酸-氢氟酸-过氧化氢酸溶体系的消解效果最好;50 mg的测定值更接近于参考值;微波消解法的测定值明显偏低,而密封高压二次消解法是灌木枝叶样品预处理的有效方法。 相似文献
27.
微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素 总被引:1,自引:1,他引:1
应用电感耦合等离子体质谱法(ICP-MS)分析岩石和土壤样品中稀土元素的含量,取样量可低至数毫克级,但200目样品粒度要求分析取样100mg才能保证代表性,导致ICP-MS灵敏度高、取样量小的优势难以得到充分发挥。本文研究了研磨方式、研磨时间、物料比对超细粒度土壤和岩石样品制备的影响,结果表明采用乙醇作为分散剂进行湿法球磨,200目粒度的土壤、岩石样品分别研磨10min和15min,土壤样品的物料比采用物料7g、研磨球500个、分散剂45mL,岩石样品的物料比选取物料5g、研磨球500个、分散剂45mL,细化程度最佳。在此条件下制备的超细粒度土壤标准物质GBW07404、GBW07447的粒径分布D_(95)可低至7.51μm、7.05μm,超细粒度岩石标准物质GBW07104、GBW07121的D_(95)可低至8.42μm、8.30μm。在硝酸-氢氟酸-过氧化氢酸溶体系中微波消解处理超细粒度岩石标准物质GBW07104,取样量减少至5mg,总用酸量减少至0.25mL,消解时间降低为25min,稀土元素的测定值与认定值基本一致,相对标准偏差在1.64%~5.21%之间。该方法用于分析其他超细粒度标准物质(GBW07404、GBW07447和GBW07121)中的稀土元素,相对误差为0.17%~6.60%,满足《地质矿产实验室测试质量管理规范》的一级标准。 相似文献
28.
准确测定砷和锑的含量是化探样品测定中的重要内容.本文介绍了测定这两种元素的一种新方法,笔者基于原子荧光光谱仪,试样经氢氟酸-盐酸-硝酸混酸微波消解,高氯酸-硫酸混酸蒸发除去氢氟酸,由盐酸-酒石酸混合溶液定容,从而得到样品中准确的砷、锑含量.本方法砷、锑校准曲线的线性相关系数均大于0.999;检出限分别为砷0.039μg/L、锑0.0058μg/L.按照实验方法测定水系沉积物、土壤标准物质中砷、锑,结果的相对误差砷为1.52%~6.77%,锑为1.25%~7.17%;相对标准偏差(RSD,n=6)砷为2.27%~5.15%、锑为1.88%~5.81%.本方法适用于化探样品中砷含量在0.05~500μg/g、锑含量在0.05~300μg/g之间的样品测定. 相似文献
29.
全反射X射线荧光光谱法同时测定复混肥料中钒铬锰铁镍铜锌铅 总被引:1,自引:0,他引:1
样品经硝酸微波消解,以镓为内标,采用全反射X射线荧光光谱法(TXRF)同时测定复混肥料中的钒、铬、锰、铁、镍、铜、锌、铅,方法检出限从铅的1.0μg/g到钒的7.0μg/g,精密度(RSD)铬为2.5%,铅为16%,除铅以外,其余元素的RSD均小于10%;方法回收率为80%~120%,Pb的回收率略低主要是由于化肥中As Kα谱线对Pb Lα谱线的干扰导致测定结果偏低。用TXRF和电感耦合等离子体发射光谱法(ICP-AES)测定不同复混肥料中各元素的含量,经统计检验,两种方法测定结果在95%置信区间内无显著性差异。对于金属元素含量较高的样品,TXRF法测定结果的相对标准偏差小于ICP-AES法。对于不同的复混肥料,在微量、痕量元素检测范围内,TXRF法具有较高的准确度和适用性,仪器使用和维护成本低,方法快速准确。 相似文献
30.