首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11847篇
  免费   2247篇
  国内免费   2795篇
测绘学   1549篇
大气科学   1667篇
地球物理   2534篇
地质学   7086篇
海洋学   865篇
天文学   240篇
综合类   871篇
自然地理   2077篇
  2024年   138篇
  2023年   479篇
  2022年   569篇
  2021年   637篇
  2020年   479篇
  2019年   612篇
  2018年   449篇
  2017年   404篇
  2016年   488篇
  2015年   499篇
  2014年   851篇
  2013年   590篇
  2012年   733篇
  2011年   730篇
  2010年   677篇
  2009年   696篇
  2008年   790篇
  2007年   669篇
  2006年   687篇
  2005年   588篇
  2004年   513篇
  2003年   473篇
  2002年   517篇
  2001年   499篇
  2000年   341篇
  1999年   331篇
  1998年   293篇
  1997年   278篇
  1996年   254篇
  1995年   250篇
  1994年   251篇
  1993年   226篇
  1992年   197篇
  1991年   183篇
  1990年   224篇
  1989年   142篇
  1988年   28篇
  1987年   20篇
  1986年   19篇
  1985年   17篇
  1984年   10篇
  1983年   8篇
  1982年   9篇
  1981年   3篇
  1980年   7篇
  1977年   3篇
  1975年   3篇
  1954年   4篇
  1948年   5篇
  1944年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
西安南郊丰水年秋季土壤水分研究   总被引:4,自引:0,他引:4  
李艳花  赵景波 《中国沙漠》2006,26(1):113-116
 通过对西安南郊丰水年秋季土壤含水量的测定,研究了地下0~6 m之间土壤含水量的变化与土壤干层的恢复问题。研究结果表明,丰水年西安南郊人工林下2~3 m的土壤含水量在20%左右,远远高于正常年份的土壤含水量,而且大于表层和深层的土壤含水量。分析得出,土壤干层发育较弱的地区在降水丰富的年份可以得到一定程度的恢复;西安地区基本适合进行人工造林;通过人工措施,增强降水入渗和土壤含水量,对树木成活和长期的生长应当具有明显的作用。  相似文献   
102.
预测陕西关中地区需水量的改进GM(1,1)模型   总被引:6,自引:0,他引:6  
需水量评价与预测是水资源规划与管理一项重要的研究内容。本文采用定额法计算需水量。通过对陕西关中地区需水量要素组成的分析,认为需水量要素属平稳时间序列,且一阶累加生成数据系列满足指数规律,符合灰色预测条件。为了提高GM(1,1)模型的精度,采用一种改变背景值的新方法,即:中心逼近方法。通过精度检验,中心逼近式GM(1,1)模型平均误差百分比、误差平方和分别比传统的GM(1,1)模型提高了0.147和1.579。用中心逼近式GM(1,1)模型预测需水量各要素近期和中长期值,经检验,其中非农业人口、农业人口、耕地面积、工业总产值预测模型满足一级模型,等级为良好。牲畜头数预测模型为不合格模型,分析其原因,主要是因为时间序列数据不完全符合指数规律。通过定额法计算,预计75%保证率时2005年和2010年关中地区工农业需水量分别占总需水量的92.21%和89.75%,生活需水量分别占7%和9.04%。  相似文献   
103.
张德会 《云南地质》2006,25(4):444-444
渗透率是确定多孔介质传输流体能力或容量的一个重要流体动力学参数。多孔介质中的流体运动,当其流速不很大即为层流(1aminar flow)时可用Darcy定律来描述流体通量:  相似文献   
104.
Three kinds of spatial analysis methods (geostatistics, concentration-area fractal model and the multifractal analysis called the moment method) were used for almost 50 elements, including heavy metals, disperse elements, rare elements and even others, in 6586 top soil (0-20 cm) samples and 1833 deep soil (150-200 cm) samples from Chengdu metropolitan area of 12400 km^2, southwestern China. The ranges of spatial correlation revealed by variograms are quite different for different kinds of elements in the top and deep soils. The most interest is the fact that the multifractal spectra of environmentally important elements such as Pb, Cr, Cd and Ni in top soils in the metropolitan area show systematic change from those in the deep soils, revealing a strong anthropogenic addition, while Hg, Zn, As, Cu and all common elements show no such kind of addition. In terms of multifractal properties based on the multifractal spectrum curves, those disperse and rare elements show great deviation from other major and trace elements, which is also of great interest.  相似文献   
105.
Mercury is a pollutant of concern due to its toxic and bioaccumulative properties. Studies on the distribution and hazard of mercury in the environment are mainly focused on its forms, toxicity and the environment standard, and progresses and results have been achieved. But these studies in the past were concentrated on the scales of laboratory or smaller districts merely, such as a small unit of mineral area, vegetable base, paddy field, lake, etc. Multi-target regional geochemical survey carried out by China Geological Survey from the 1990s to now is a fundamental and commonweal geological survey, large-scale and systematical inquisition and research were conducted in 19 provinces (or municipalities directly under the Central Government) in the eastern overlay region of China, and the purpose is to provide the basic geochemical data for national economic construction, adjustment of industrial and agricultural structures and sustainable social development. Geochemical studies aim at investigating soils in these regions and 52 elements have been tested, producing a great amount of data at the same time. Methods: based on the data from 3061 samples of surface soil and 832 samples of deep soil from the project of multi-purpose geochemical survey in the Chengdu Basin, Sichuan, China, this paper describes the correlation relationship between Hg and other 48 elements and their spatial distribution in surface and deep soils of these areas by applying the method of linear regression and factor analysis.  相似文献   
106.
Nitrogen cycle is an important bio-geochemical process in the environment. Measurement of the total nitrogen (TN) is a routine experiment in agriculture, biology and environmental sciences. The Kjeldahl method (KM) and elemental analyzer method (EA) are both commonly used to determine TN. Total nitrogen by EA is the sum of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia. Total nitrogen by KM (TKN) is made up of both organic nitrogen and ammonia. A comparative study focused on the two methods is conducted by analysis of TN in 97 samples from the sediment sequence of Gouchi, a salt lake in North China. KM presents a higher degree of accuracy than EA with a standard deviation of 0.007 vs. 0.024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. Therefore, for samples from lake sediment sequences or soils in North China, KM is inapplicable to determining TN because of usually high contents of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In Lake Gouchi, the contents of nitrate and nitrite nitrogen vary from 1.40% in the lower part of the sequence to 14.77% in the uppermost part, suggesting a gradual evolution process from a fresh water lake to the present-day salt lake.  相似文献   
107.
The Taojiang Mn ore deposit was exploited in the early 1960s, and waste rocks were developed since then. Because the Mn ores were hosted within the metal-enriched black shales (Peng et al., 2004), the continuous mining has led to the exposure of an immense quality of black shales, which might cause serious impacts on environments. The present study deals with this environmental issue with samples from the waste rocks, and from the surrounding soils and surface water. The mineralogy of the waste rock was studied using EMPA, then a large number of elements in all waste rock, soil, and water samples were analyzed at a wide range of concentrations with high accuracy using an Elan6000 ICP-MS machine at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The waste rock is composed mostly of black shales, with minor Mn carbonates. Both black shales and Mn carbonates of the waste rock contain many sulfide minerals, mainly pyrite, with minor galena, sphalerite, chalcopyrite, and others. The waste rocks are enriched in many metals including Sc, V, Cr, Co, Ni, Fe, Mn, Cu, Zn, Pb, Th, U, Mo, Sb, Sn, Tl, and others, and the metals are mostly hosted within the sulfides. Weathering of waste rocks might cause emission of the following metals: V, Cd, Ni, Th, U, Mo, Sb, Tl, Sc, Cr, Cu, Zn, Sn, and minor Co, and Pb. The surrounding soils are highly enriched in Cr, Co, Cu, Zn, Mn, Mo, Cd, Tl, and Pb, with the enrichment factors of 2.67.3.8, 7.26, 7.27, 8.2, 5.7, 13, and 5.4, respectively. The element ratios (Rb/Cs, Fe/Mn, Nb/Zr, Hf/Zr, and Ba/Sr) and REE distribution patterns of the soils are similar to those of the waste rocks and bedrocks.  相似文献   
108.
The Raniganj Coalfield is the oldest coalfield in India that has been continuously and extensively mined since the late eighteenth century. The present study reports a geochemical investigation and environmental quality assessment using soil and water in the area surrounding a stream, locally known as Singaran Nala (Nala means storm water drains in Bengali), in the Raniganj Coalfield. Soil (top soil, mud, silty clay and laterite) and rock samples (sandstone and shale) were collected from the study area and were analyzed for trace metals (Cr, Cu, Fe, Mn, Ni and Zn). Surface waters from the stream and the Damodar River as well as ground waters from hand pumps and underground mine pits were collected. Water samples were analyzed for major ions (Na^+, Ca^2+, Mg^2+, Cl^-, HNO3^- and SO4^2-) and trace metals (Cu, Fe, Mn, Ni, and Zn). Trace metal concentrations in soil samples are found higher than the average world soil composition. Nevertheless, trace metal (Cr, Cu, Ni and Zn) concentrations in soils exceed or reach the maximum allowable concentrations (MAC) proposed by the European Commission for agricultural soils. In particular, Ni concentrations exceed the typical value for cultivated soils. Chromium, Cu and Ni concentrations in laterite and Cr concentration in topsoil exceed the ecotoxicological limit.  相似文献   
109.
A total of 63 soil samples from 3 different soil profiles (urban, suburban and industrial areas) in major towns in the east coast of Peninsular Malaysia were analyzed for the total concentrations of Cu, Zn, Pb, Ni and Cr. The soil samples were subjected to acid digestion and the concentrations of total metals extracted were measured or flame atomic absorption spectrometry and inductively coupled plasma - atomic emission spectrometry. According to the result of this study, Pb and Zn concentrations in urban soils are much higher than those of industrial and suburban soils. Total concentrations of Cu and Cr in industrial soil samples are high compared to other two soil profiles and Ni concentrations in the suburban area are slightly higher those of urban and industrial soils. Since Malaysia has not yet to come up with her own soil maximum allowable limit, the heavy metal concentrations were compared with the Dutch maximum allowable limit. The results indicated that the median of heavy metals values in the three different soil profiles is still below the Dutch system limit. From the maximum allowable value obtained from the Dutch system, a contamination/pollution (C/p) index for each site was calculated for the set of these five heavy metals. An advantage of using this method is to make a differentiation between pollution (C/p〉1) and contamination (C/p〈1) status in soils as well as being able to characterize each status into 5 different categories (slight, moderate, severe, very severe and excessive).  相似文献   
110.
Tea bush is one of the plants cultivated in acidic soil, and is a typical hyper-accumulator of F and Al. Brick tea is a kind of brick-formed tea compressed using the older and coarse leaves and branches of tea trees. Brick tea mixed with milk is drunk as a daily indispensable beverage for Mongols, Ewenki, and other minority nationalities in the pastoral and semi-pastoral areas of Northwest China. It is reported that drinking brick tea can result in dental and skeletal fluorosis due to the high F content in it. Because Alzheimer's disease (AD) is related with Al in human brain, and Al has potential toxicities for skeletal and neural systems,  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号