首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   141篇
  国内免费   445篇
测绘学   9篇
大气科学   5篇
地球物理   140篇
地质学   929篇
海洋学   50篇
天文学   1篇
综合类   30篇
自然地理   16篇
  2024年   9篇
  2023年   35篇
  2022年   43篇
  2021年   30篇
  2020年   34篇
  2019年   54篇
  2018年   51篇
  2017年   30篇
  2016年   36篇
  2015年   44篇
  2014年   50篇
  2013年   43篇
  2012年   51篇
  2011年   48篇
  2010年   59篇
  2009年   48篇
  2008年   51篇
  2007年   38篇
  2006年   49篇
  2005年   41篇
  2004年   40篇
  2003年   35篇
  2002年   32篇
  2001年   34篇
  2000年   20篇
  1999年   25篇
  1998年   22篇
  1997年   20篇
  1996年   15篇
  1995年   14篇
  1994年   20篇
  1993年   19篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   8篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有1180条查询结果,搜索用时 0 毫秒
31.
人工土层冻结法加固在盾构出洞施工中的应用   总被引:10,自引:0,他引:10  
秦爱芳  李永和 《岩土力学》2004,25(Z2):449-452
软土地区盾构出洞施工中洞口土体易失稳、渗水,上海明珠线二期工程浦东大道站至张扬路站区间,隧道在盾构出洞施工中,为确保地面建筑及地下管线的安全及正常使用,首次采用了人工土层冻结加固,取得了良好的效果;本文介绍了该工程出洞口土体加固的方案选择、关键技术处理及实际取得的效果,并探讨了人工土层冻结加固在含水松软土层的地下工程中的应用前景.  相似文献   
32.
抽水地面沉降数学模型的研究现状与展望   总被引:14,自引:1,他引:14  
在综合已有文献的基础上,分析了最近几十年来用于模拟抽取地下水引起地面沉降的数学模型,按照水流模型和土体变形模型的结合方法将地面沉降模型归纳为三种类型,即由水流模型获得各土层的水头变化、再根据水头变化计算土层变形的两步模型;仅考虑垂直方向变形与孔隙水压力变化的相互作用,而水平方向只考虑渗流、不考虑变形的部分耦合模型;考虑孔隙水压力变化和土体变形的相互影响和作用的完全耦合模型。论述了每种类型模型的主要特点、代表性模型及其不足之处,并指出三维渗流和变形的耦合分析是地面沉降模型进一步研究的方向,同时作为检验模型合理性和适用性的手段,还应加强地面沉降的室内模型试验。  相似文献   
33.
在钻孔灌注桩施工过程中,对经常发生的工程事故,介绍了几种防范措施和钻孔灌注桩施工中的重要指标桩底回淤量的控制方法,通过防范工程事故、控制回淤量,从而达到提高桩基质量的目的。  相似文献   
34.
为研究不同颗粒级配陷落柱充填物在不同固结荷载下的力学特性,基于土工固结试验制备不同状态下的相似模拟充填体试样,通过充填体在不同状态下的三轴加载实验、压汞及扫描电镜实验,研究了陷落柱充填体三轴应力状态下的力学特征及微观结构演化机制。结果表明:充填体具有明显的塑形特征,其应力-应变曲线可以划分为4个阶段:孔隙压密段、稳定变形段、变形破坏段和类蠕变阶段。充填体偏应力随Talbol指数n呈先增加后减小的趋势,充填体三轴抗压强度与Talbol指数之间符合二次多项式关系,均满足较高的拟合度并且偏应力强度达到最优的Talbol指数分别为0.71、0.65和0.64;偏应力随着固结荷载的增加而线性增加,增长率随着固结荷载和Talbol指数的增加呈逐渐减小的趋势。结合压汞和扫描电镜测试结果,固结荷载和Talbol指数的变化改变了颗粒间的接触状态,影响着岩土体试样的偏应力强度;随着Talbol指数的增加,充填体内颗粒间的相互作用增强,初始承受的外荷载比例增大,骨架结构效应更加显著,偏应力则主要来自岩土颗粒的接触应力集中。通过力学强度和微观结构特征研究在宏观和微观尺度上解释了充填体的颗粒级配效应提供参考。  相似文献   
35.
为探究硫酸盐渍土在含水率递减下的盐胀特性,通过自主设计的试验装置,在室内开展了11组含水率单次递减下的盐胀试验,共历时2 868 h。结果表明:在含水率单次递减下硫酸盐渍土的起胀含盐量约为1.2%。含盐量<1.2%时,土体干缩,干缩量与含盐量近似呈下凸的二次抛物线规律,且干缩峰值含盐量约为0.5%;含盐量≥1.2%时,土体膨胀,且盐胀率与含盐量近似呈线性增大规律。盐胀敏感含水率区间受含盐量影响很小,含盐量从1.5%增至4.0%,盐胀敏感含水率区间基本稳定。此外,含水率递减速率与含盐量呈负相关规律,同一含盐量的硫酸盐渍土,其含水率的递减速率随含水率的降低亦减慢。基于以上试验结果,进一步开展了4组单次降温下的盐胀对比试验,结果表明:含盐量升高时,起胀温度区间逐渐升高,盐胀敏感温度区间的区间范围逐渐扩大。单次降温下的盐胀率均高于含水率单次递减下的盐胀率,且随着含盐量的升高两试验条件下的盐胀率差值趋于一常数。研究结果对西北地区高含盐量的残余型硫酸盐渍土地基的盐胀性评价具有重要指导意义。  相似文献   
36.
为了研究西北干旱地区盐渍土在自然气候条件下的水-热场变化特征与盐胀变形规律,在4.5 m深试验坑内埋设了若干套竖向变形观测设备、含水率和温度传感器,对坑内不同深度土层的温度场、水分场和盐胀变形随季节性变化状况进行了为期1 a的动态监测和分析研究。结果表明:0.6 m以上土层相较于其他土层对气候温度变化的响应更加积极、温差变化幅值也更大,且土层间的温差幅值随降温期的不断深入而增大;土体含水率变化主要受降水、蒸发和温度梯度的耦合影响, 0.4 m以上土层水分的变化幅度较其他土层而言更为显著,土层水分迁移沿深度方向表现出分带现象;盐胀变形主要受温度和水分迁移的影响,盐胀变形主要发生在距地表1.0 m土层深度内,主要发展时间在当年11月至次年2月之间。  相似文献   
37.
谢涛  罗强  张良  连继峰  于曰明 《岩土力学》2018,39(5):1682-1690
极限状态下墙体侧向位移对土压力计算和支挡结构设计影响显著。根据Rankine变形体和Coulomb刚塑体模型,将墙后土体变形分别当作单剪和直剪试验中试样的剪切过程,以达到极限剪切变形(剪应变或单位长度剪切位移)作为进入主被动状态标准,构建了土体变形与墙体位移的几何关系,提出了反映土体变形与强度特性,同时考虑静止时初始应力状态影响的墙体极限侧向位移近似计算模型。分析表明:土体极限剪切变形、滑移区范围、初始应力状态是影响墙体极限位移的核心要素,其中极限剪切变形占据主导作用,是导致不同颗粒组成及密实程度土体进入极限状态所需墙体位移差异显著的主要原因,而主被动区范围不同和因静止土压力系数 1引起的初始剪切变形,则是被动状态墙体位移远大于主动的关键因素;算例中主动与被动状态下墙体位移与墙高之比分别介于0.5‰~13.2‰和?0.4%~?5.2%,且主动状态下细粒土墙体位移大于粗粒土,计算结果与工程经验及相关文献模型试验基本一致。  相似文献   
38.
朱顺然  徐超  丁金华 《岩土力学》2018,39(5):1775-1780
针对土工合成材料界面特性试验易受试验装置影响的特点,采用大型叠环式剪切仪进行土工织物与砂土的界面剪切试验。对比砂土本身、土工织物与砂土的两种剪切试验结果发现,土工织物-砂土剪切引起的叠环位移较小;叠环的水平位移变化规律与土体的剪胀性具有密切联系,土工织物限制了下剪切盒内土颗粒的运动,对达到峰值强度时的土体剪胀也具有抑制作用。由试验结果可知,筋-土界面的剪切带远小于剪切的影响范围,土工织物在界面剪切中的作用不能仅通过剪切带反映,还应考虑土工织物的屏蔽作用和对于土体剪切带形成的影响。  相似文献   
39.
谈恒文 《山东地质》2001,17(2):53-55,60
山东省五莲县汪湖-管帅--于里一带的地裂缝,自70年代发生以来一直处于活动状态。本文对其主要特征,危害程度及形成原因进行了分析,并提出防治对策。  相似文献   
40.
邴慧  何平  杨成松  施烨辉 《冰川冻土》2006,28(1):126-130
易溶盐在土中的存在及其在冻结过程中的重新分布对土体的冻结过程有重要影响.在开放系统单向冻结条件下,对青藏铁路沿线粉质红粘土进行了冻结试验.结果表明:随着冷能的持续传递,硫酸钠盐和水分向温度较低处迁移,土体0℃曲线持续降低;但基于测定的含盐土大量冻结温度的基础上,对土体冻深的研究发现,在开放单向冻结条件下土体冻深随着水盐迁移进程的发展而减小,造成与补蒸馏水的土体相比,土体的冻胀较小.同时,利用冻深发展曲线和硫酸钠水溶液相图及溶解度曲线,对土柱中的冻胀和盐胀分别进行了计算,结果认为:土体变形主要是由冻胀引起,硫酸钠结晶膨胀只发生在未冻土段,这与试验结束后对土体冻土段和未冻土段的干密度分层测定的试验结果相一致.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号