首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   70篇
  国内免费   190篇
测绘学   3篇
大气科学   12篇
地球物理   23篇
地质学   407篇
海洋学   7篇
综合类   10篇
自然地理   33篇
  2024年   7篇
  2023年   19篇
  2022年   33篇
  2021年   30篇
  2020年   15篇
  2019年   28篇
  2018年   30篇
  2017年   28篇
  2016年   33篇
  2015年   24篇
  2014年   21篇
  2013年   17篇
  2012年   27篇
  2011年   30篇
  2010年   24篇
  2009年   21篇
  2008年   26篇
  2007年   16篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   10篇
  2001年   4篇
  2000年   1篇
  1999年   7篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1985年   1篇
排序方式: 共有495条查询结果,搜索用时 31 毫秒
421.
基于变形监测成果的宝塔山滑坡稳定性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
宝塔山斜坡坡高壁陡,存在多处崩塌滑坡隐患,开展了有针对性的斜坡变形迹象及诱发因素监测,分别进行了滑坡体深部位移监测、降雨监测、土壤含水率监测和视频监测,建设了监测数据实时自动采集、自动传输、自动入库的宝塔山斜坡自动监测系统.监测结果表明,宝塔山滑坡各监测点位移量接近零,降雨对土壤含水率具有明显影响的深度为0~4.0m.结合视频监测及宏观调查资料,判定宝塔山基底整体稳定,发生整体滑动产生大型滑坡的可能性很小,但在极端气候条件下发生浅层滑坡和中小型崩塌的可能性很大,危及宝塔山安全,需采取有效的崩塌滑坡灾害治理措施.  相似文献   
422.
本文以风化砂改良膨胀土的抗剪强度指标为研究对象,通过室内直接剪切试验,研究了在不同垂直荷重作用下,不同掺砂比例及不同含水率对改良膨胀土抗剪强度指标c、值的影响规律及各种不同垂直荷重下的-关系。影响直接剪切试验结果的两个关键因素是试验时的垂直荷重和剪切速率,而现行规范对剪切速率是有明确规定的,但对垂直荷重只有一个推荐性的取值。本文对膨胀土掺入了10%、20%、30%、40%、50%的风化砂,分别配以6%、8%、10%、12%、14%的水,然后在I级垂直荷重(12.5~50kPa)、Ⅱ级垂直荷重(62.5~100kPa)、Ⅲ级垂直荷重(100~400kPa)作用下,进行剪切试验。通过试验研究得知:垂直荷重对改良后膨胀土抗剪强度指标影响较大,随着垂直荷重的减小,掺砂后的膨胀土内摩擦角逐渐增大,黏聚力逐渐减小; 在各级垂直荷重下,在同一含水率状态下,黏聚力均随着掺砂比例的增大而逐渐减小,而内摩擦角均是先增大后减小; 在同一掺砂比例下,黏聚力及内摩擦角均随着含水率的增大而先增大后减小。本试验的研究成果为风化砂改良膨胀土用作公路路基填料提供了试验依据。  相似文献   
423.
含水率对重塑淤泥不排水强度性质的影响   总被引:2,自引:0,他引:2  
王亮  谢健  张楠  王升位  吕一彦 《岩土力学》2012,33(10):2973-2978
通过室内调配不同含水率的重塑淤泥,利用研制的室内微型高精度十字板剪切仪,研究了含水率对重塑淤泥重塑不排水强度的影响。该仪器的剪切强度分辨率为1 Pa,经试验验证,仪器测量结果的稳定性较好,但对强度越低的重塑淤泥试样其测量值的相对平均偏差越大。淤泥含水率对淤泥的不排水强度有显著影响,不排水强度均随含水率/液限的增大而减小,含水率/液限越大,不排水强度下降趋势越小。相同的含水率/液限时,不同种类的重塑淤泥的不排水强度比较接近。在双对数坐标中,不排水强度均随含水率/液限的增大而线性减小。由试验数据得出了不同种类重塑淤泥的不排水强度与含水率/液限之间的关系式,利用该关系式可以求得每一种重塑淤泥任意含水率下的不排水强度。文中的试验值大于洪振舜提出的关系式的计算值。当IL >2时,试验值与Locat和Leroueil提出的关系式的计算值基本吻合,当IL <2时,试验值大于Locat和Leroueil提出的关系式的计算值。  相似文献   
424.
水驱特征曲线的适用条件研究   总被引:1,自引:0,他引:1  
水驱特征曲线是注水开发油田用来预测动态储量及可采储量等参数的实用方法之一,目前,国内、外学者已经推导出五十多种水驱特征曲线表达式,但每种水驱特征曲线都难以描述油田开发的全过程,都有各自的适用条件。这里通过对甲型水驱曲线和乙型水驱曲线的适用条件、诊断的探讨和分析,认为水驱特征曲线在油田低含水开发阶段和特高含水开发阶段都不适用,它只适用于油田开发的中~高含水阶段。同时在利用水驱特征曲线预测可采储量时,水驱曲线直线段的选取应当慎重,应将甲型水驱曲线与乙型水驱曲线相结合使用,这对于单井来说尤其重要,只有这样才能更好地选取水驱曲线最佳直线段,从而使预测结果更加准确有效。  相似文献   
425.
砂类土体隧道围岩压缩模量的试验研究   总被引:3,自引:1,他引:2  
砂类土的压缩模量与砂类土体隧道嗣岩稳定性有较大的关系.从影响砂类土体隧道嗣岩稳定性因素及围岩稳定性分级的角度出发,探讨了与砂类土体隧道围岩稳定性相关的压缩模量的影响冈素,发现砂类土的细粒(d<0.074 mm)含量对其压缩模量有较显著的影响,二者呈负相关;砂类土的相对密实度并非完全足越人而压缩模量也越大,还与细粒含量及细粒含水状态仃关:采用砂类上细粒含水率而不是砂类土含水率的方法来评定潮湿砂类土的压缩模量,得出了细粒含水率对砂类土压缩模量的影响规律.根据细粒含量和相对密实度对压缩模量的影响规律,提出了两指标的分级界限.  相似文献   
426.
胡杨根系分布特征与根系吸水模型建立   总被引:16,自引:1,他引:15  
依据2006年和2007年6~7月在极端干旱区额济纳的实测资料,利用分形和概率统计的方法对胡杨根系分布与根区土壤水分的关系进行了分析研究。引入土壤含水率期望(cm·g/g)的概念,建立了含水率期望值与根系分维值之间的函数关系,并求出了适宜胡杨生长的土壤含水率期望值的范围。同时建立了初版的根系吸水模型,并进行验证,得到较好的结果。  相似文献   
427.
水对岩石的物理力学性质影响较大,研究不同含水状态下岩石受冲击荷载后破碎物的分形规律具有较强的现实意义。借助于分离式霍普金森杆(SHPB)实验装置,开展不同含水状态的泥质粉砂岩的冲击试验,然后对破碎物的块度分布进行深入分析,并基于尺寸-频率分析方法,重点对破碎物颗粒粒径分布的分形规律进行探讨。结果表明,随着加载速率的提高,泥质粉砂岩冲击破碎物单块体积普遍减小,残留碎块的数量越多,破碎的程度也越高,此时分形维数越小;含水率越大,小颗粒比例越大,岩样破碎程度越高,饱水状态岩样的分形维数较其他两种状态大,天然含水状态和自然吸水状态岩样冲击破碎的分形维数较为接近;当冲击速度较大时其将成为影响分形维数的主要因素,含水率的影响相对较小。  相似文献   
428.
青海北部高含盐细砂冻胀特性研究   总被引:5,自引:4,他引:1  
吴亚平  王宁  潘高峰  李涛 《冰川冻土》2018,40(2):307-313
为研究盐分含量和含水量对青海北部高饱和盐渍砂土冻胀特性的影响,为高盐含量地区道路设计和施工提供理论依据及参考,通过对含盐量和含水量不同的盐渍砂土进行冻胀试验,开展了对高含盐饱和细砂土的冻胀特性的试验研究,得到了含水量及含盐量对砂土冻胀量的影响规律,发现含盐细砂的起胀温度受含水量的影响不大,而主要取决于含盐量。当含盐量为5%时,起胀温度最高,然后随含盐量的增加而降低。冻胀率随着温度的降低而升高。含盐量相同时,土样的冻胀率随含水率的增加呈“S”型递增趋势。在含水量固定情况下,含盐量小于5%时,冻胀率与含盐量成正比;含盐量大于5%时,冻胀率与含盐量成反比。可用多项式拟合出冻胀率随不同含水率、含盐量的变化规律。  相似文献   
429.
以攀枝花教师街滑坡为背景,考虑土体抗拉强度的影响,结合抗剪强度,采用“拉剪强度同等折减法”来研究滑坡的稳定性。通过室内试验,分析了含水率对教师街滑坡不同岩土层的影响规律,发现滑带层土体的内摩擦角和粘聚力受水的作用更加显著。通过利用有限差分软件FLAC和拉剪同等折减法,得到了教师街滑坡的拉剪临界折减系数、临界内摩擦角、临界粘聚力;同时,还发现教师街滑坡对土体的内摩擦角敏感度最高,但是抗拉强度的影响和粘聚力很接近,不容忽视;滑坡坡肩位移大于坡脚位移,应注意坡肩位移的变化。  相似文献   
430.
土壤水分是植被发育和生态恢复的关键。降雨、植被等影响着土壤含水率的时空异质性等的变化,这种作用在西南喀斯特地区尤为显著。以云南石林为例,选取典型石漠化样地及次生林样地,利用PR2(PR2-UM-2.0)传感器于每月月末对两类样地中0~1 000 mm土层的土壤含水率进行测定。结果表明:(1)石漠化样地各土层的土壤含水率在1年测定时间范围内均显著高于次生林样地,这与非喀斯特区域植被-土壤含水率关系不同;(2)两类样地的1年内各月土壤含水率之间差异显著,雨季各层土壤含水率高且波动较旱季小;(3)土壤含水率随土层深度增加而增加,400~600 mm范围增幅最大,600 mm以下的土壤含水率增幅会逐渐减小。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号