首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   104篇
  国内免费   205篇
测绘学   27篇
大气科学   9篇
地球物理   74篇
地质学   476篇
海洋学   25篇
天文学   1篇
综合类   37篇
自然地理   3篇
  2024年   1篇
  2023年   34篇
  2022年   41篇
  2021年   49篇
  2020年   28篇
  2019年   40篇
  2018年   33篇
  2017年   38篇
  2016年   34篇
  2015年   29篇
  2014年   29篇
  2013年   29篇
  2012年   36篇
  2011年   20篇
  2010年   20篇
  2009年   13篇
  2008年   20篇
  2007年   14篇
  2006年   12篇
  2005年   10篇
  2004年   5篇
  2003年   16篇
  2002年   6篇
  2001年   12篇
  2000年   17篇
  1999年   15篇
  1998年   9篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1988年   1篇
  1984年   1篇
  1961年   1篇
排序方式: 共有652条查询结果,搜索用时 553 毫秒
221.
美国能源部正在实施干热岩“地热能前沿瞭望台研究计划”(FORGE计划)。它是以经典干热岩定义的干热岩勘查开发为约束,通过增强型地热系统(EGS)示范工程建设实践,形成新一代EGS试验平台。美国本着“可复制的结果=巨大的潜力”的理念,实现干热岩勘查开发技术新突破,以满足美国1亿家庭绿色电力供应为实际应用目标。中美典型EGS场地勘查现状对比结果表明:犹他州米尔福德与青海省共和县恰卜恰两个典型EGS场地具可比性,大致处于“并跑”的水平;在天然裂隙系统、原位地应力场、压裂参数获取与压裂方案制定等方面,米尔福德EGS场地有所超前。据此建议有关部门加快青海省共和县恰卜恰EGS场地进入勘查开发阶段,以提高我国干热岩勘查开发技术水平,早日实现EGS工程化。  相似文献   
222.
深层致密砂岩储层可压裂性评价新方法   总被引:3,自引:3,他引:0  
岩石可压性评价是储层压裂改造层位优选、压后产能评估的重要基础工作。准中4区块致密砂岩储层埋藏深、物性差,亟需通过压裂改造提高工业产能。因此,以董2井北三维区侏罗系致密砂岩为例,基于岩石三轴实验建立了致密砂岩断裂能密度—弹性模量的拟合公式,采用矿物成分法和弹模-泊松比法确定了研究区不同深度岩石脆性指数,采用岩石破裂准则确定了研究区不同深度的裂缝发育指数。以断裂能密度表征致密砂岩断裂韧性,以裂缝发育指数表征储层天然裂缝发育程度,综合考虑岩石脆性、断裂韧性、地应力环境和天然裂缝发育程度的影响,采用层次分析法计算了各因素权重,建立了适合深层致密砂岩的可压性评价方法。研究结果表明,可压裂性指数大于0.55时,可压性好;可压裂性指数介于0.50~0.55之间时,可压性一般;可压裂性指数小于0.50时,可压性差;研究区D7井的最佳压裂层位为4145~4160 m、4470~4480 m、5290~5330 m,D8井的最佳压裂层位为5120~5330 m、5350~5365 m,D701井的最佳压裂层位为3900~3910 m、4430~4440 m、4455~4465 m、5125~5135 m。   相似文献   
223.
樊好福 《探矿工程》2019,46(8):15-22
随着涪陵页岩气田100×108 m3/a产能建设、长宁-威远国家级页岩气产业示范区等区块页岩气的高效勘探开发,我国的能源结构也在不断地改变。页岩气的商业化开发有赖于丛式水平井钻井技术及大型分段压裂技术的不断发展和进步,高效的钻完井配套技术是提高页岩气勘探开发效果的有力保障。中原石油工程公司通过自主攻关和集成配套相关钻井新工艺、新工具,在钻井实践中取得了一系列技术突破,形成了三维大偏移距长水平段水平井轨迹控制技术、油基乳化/无土相油基钻井液技术、防漏堵漏技术、页岩气随钻解释评价技术、油基钻井液高效冲洗技术、“井工厂拉链式”压裂技术、高压网电配套工程技术等关键技术。上述技术在川渝的涪陵、长宁-威远、永川等工区140余口井的成功应用,有效支撑了我国页岩气产能建设。本文基于中原工程页岩气钻完井配套技术的攻关及实钻经验总结,对其他页岩气勘探开发区块的钻完井工程具有较强的指导意义。  相似文献   
224.
225.
徐辰宇  白冰  刘明泽 《岩土力学》2019,40(4):1474-1482
CO2增强型采热系统(CO2-EGS)工程中CO2作用下岩石的水压破裂行为是目前亟需解决的一个关键科学问题。从福建漳州采取花岗岩露头,利用自主研制的厚壁圆筒式致裂仪进行了不同流体(CO2、水)的水压致裂试验,研究了CO2、水入渗致裂后花岗岩的破裂特征及破裂机制。研究表明:随着致裂液黏度的减小,试样破裂过程会形成更多且更曲折的微裂纹分支,这意味着,采用CO2压裂可能更有利于形成缝网,从而有助于提高增强型采热(EGS)工程中换热效率;试样的破裂压力随着致裂液黏度的减小而降低,而较低的破裂压有助于注入井的安全运行;试验结果可用从对流换热角度分析的流体岩石相互作用机制解释,进而验证了其准确性。  相似文献   
226.
卜淘 《现代地质》2019,33(3):672-679
新场气田属于大型多层致密砂岩异常高压气藏,储层物性差,非均质性强,气井动用储量低。目前,为大幅度提高气井产能,提高储量动用长度,该气藏多采用多段压裂水平井开发。因此,迫切需要论证裂缝参数及其组合对多段压裂水平井开发效果的影响,为气藏下步科学高效开发和持续高产稳产提供理论基础。以川西新场气田为研究对象,采用数值模拟法深入研究了压裂水平井裂缝几何布局对气井产能的影响,包括非均匀裂缝长度、非均匀裂缝间距、压裂规模与裂缝数量、裂缝长度与间距的匹配、裂缝夹角与间距的匹配。结果表明:对于多段压裂水平井,U型模式的裂缝长度布局最优;均匀裂缝间距开发效果优于非均匀裂缝间距;水力压裂时,少段数长缝能取得更佳的开发效果;0. 67~1倍缝长的裂缝间距布局、垂直于井筒的正交裂缝布局有利于改善压裂水平井开发效果,裂缝间距的增大能有效降低非正交裂缝低夹角对产量的影响。  相似文献   
227.
微地震监测技术是页岩气开采过程中对页岩气储层压裂效果评价和指导压裂过程的重要手段,可通过观察、分析压裂过程中诱发微地震事件,获取压裂裂缝参数、导流能力、裂缝展布发育方向等信息。中牟区块牟页1井具有低孔、低渗储层特征,对含气层段的三层储层,采用大排量水力压裂施工,进行地面微地震监测、井中微破裂成像技术压裂监测及微地震监测;牟页1井监测压裂结果显示为缝长251~496m,缝宽120~252m,改造体积约为237.5×104~387.7×104 m3,方位角64°~80°。压裂实施使储层裂缝开启含气层段得到改造,指导了实时压裂和压裂效果评价。  相似文献   
228.
压后返排作为压后管理的重要组成部分已经得到了压裂工程师的广泛关注,特别对于低渗透储层而言,如不能及时返排出储层中的压裂液,压裂液将会进入储层深部,对储层产生二次伤害。但如果返排速度过快,又会导致支撑剂发生回流,降低压裂效果,严重的会导致井筒及井口装置的破坏。因此,低渗透储层返排控制的一个重要关键技术就是优化合理的返排流速。返排见气前,本文基于物质平衡原理,利用渗流力学和工程流体力学理论,建立了支撑剂回流及裂缝闭合时间计算模型,得到了不同时刻井口压力与最佳油嘴匹配关系图。当返排见气后,研究并分析了见气后油嘴变大的原因,给出了具体的油嘴制定方法。以新疆低渗透储层X井为例,制定了返排优化方案,取得了较好的返排效果,该方法对同类储层具有一定的借鉴作用。  相似文献   
229.
水力压裂是低渗油气藏的主要开发手段,传统数值模型所得到的基质-裂缝窜流量以及断裂参数精度不足.为此以流固耦合理论与断裂力学相结合的压裂模型为基础,模拟了水力裂缝扩展过程.在模型中分别引入离散裂缝模型和广义J积分计算基质-裂缝流量交换和断裂参数,并采用动态网格技术对裂缝尖端进行局部加密,以提高模拟的效率和精度.模型计算结果显示,影响水力压裂过程的主要参数中:基质渗透率和压裂液粘度主要影响水力裂缝的最终形态;岩石弹性模量影响裂缝宽度.对压裂车而言,最高工作压力一般都能够满足压裂增产需求,其最大输出功率和最大输出流量是限制压裂能力的主要因素.   相似文献   
230.
直井开发煤层气钻井和压裂成本高,控制面积小,单井产气量低;煤层内水平井钻进难度大,风险高,薄煤层中井眼轨迹控制难度大,钻井液有害固相对储层伤害严重,采收率低。基于此,分析贵州织金区块煤系地质构造,提出在煤系地层内稳定的非储层内布水平井,通过压裂造缝沟通水平井上下煤层同时开发多层煤层的新思路。与常规开发方式相比,非储层内水平井具有钻井风险小、储层伤害小、单井产量高的优点,同时还可以开发煤系致密气和页岩气,提高非常规天然气利用率。研究非储层内水平井开发贵州织金煤层气技术,为解决贵州煤系地层煤层多而薄、层间距小等特性煤层气开发难题以及综合利用煤系气提供新的方式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号