首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   40篇
  国内免费   81篇
测绘学   12篇
大气科学   7篇
地球物理   30篇
地质学   195篇
海洋学   64篇
天文学   9篇
综合类   7篇
自然地理   16篇
  2024年   5篇
  2023年   17篇
  2022年   13篇
  2021年   20篇
  2020年   8篇
  2019年   12篇
  2018年   4篇
  2017年   12篇
  2016年   7篇
  2015年   13篇
  2014年   21篇
  2013年   18篇
  2012年   16篇
  2011年   17篇
  2010年   18篇
  2009年   9篇
  2008年   13篇
  2007年   8篇
  2006年   11篇
  2005年   11篇
  2004年   12篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   9篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有340条查询结果,搜索用时 453 毫秒
121.
侯龙君  李法军 《地下水》2022,(4):122-124
基于陕北黄陵县黄土塬地下水赋存条件及地质环境,得出降雨量、地形地貌、地层岩性、地质构造及人为破坏是造成黄土塬缺水的主要原因。探明黄陵县黄土塬区相对的富水地段和富水岩组,并建议采用水文物探、改变钻探工艺的方法增大黄土塬区供水井涌水量,提出了研究含水层岩性和地质构造,来寻找黄土水和基岩风化带裂隙水,通过混合开采两层水的方式来缓解黄土塬区缺水的问题。  相似文献   
122.
在下水道管线的修复作业中,管线的壁厚是确保结构强度安全性的一个关键因素。对小直径的管道(比如侧管)工程,现在的趋势是采用薄壁型管材。对于大直径或者下水道出水口之间的长距离管道,其壁厚则受到最大固化深度(如紫外线等)和道路运输重量的限制。在本论文中建立的力学模型是根据德国规范ATV-M127-2:2000和2011年出版的适用于所有管线和荷载的第二版草案建立起来的。描述本模型的相关参数如下:旧管道的几何尺寸、旧管道的抗压强度和偏心轴力、管道几何尺寸和结构缺口及其估算方法、管道半径与壁厚比、土壤性质(变形模量、横向支撑力、弹性和非弹性特性)、内衬材料的性质,比如长时间下的抗弯强度和杨氏模量、内衬材料壁厚与规定之间的偏差。本文的主要内容包括为了维护结构安全而进行的强度和稳定性失效的判定,通过上述参数建立管道壁厚的模型。最后通过研究两个实例论证了对参数进行合适的检验和结构的设计的优点。  相似文献   
123.
桂西二叠系铝土矿地球化学特征与沉积模式   总被引:2,自引:0,他引:2  
桂西二叠系铝土矿具有"二元"成层构造,下层为厚层状铝土矿层,主要矿石类型为块状铝土矿、豆鲕状和碎屑状,上层为层韵状铝土矿层,主要矿石类型为致密状,次之为碎屑状,上下层之间局部地段可见冲刷面。下部厚层状铝土矿层常量组分Al_2O_3、Fe_2O_3、TiO_2明显高于上部层韵状铝土矿层,SiO_2高出4倍,活泼组分Ca O+MgO+K_2O+Na_2O的含量高出10倍,微量元素中Ba、Rb、Sr、Li表现为上层高下层低,不活泼元素Sc、Cr、Ga、Nb、Hf、Ta、V、Zr、∑REE显示上层低下层高特点。铝土矿层属于峨眉山热地幔柱事件引起的东吴运动过程中两个小的"事件—过程"亚阶段(幕)产物,厚层状铝土矿分层形成于"岩浆—夷平"均衡亚阶段,作为物源的古风化壳成熟度高,层韵状铝土矿分层形成于"岩浆—夷平"失衡亚阶段,而相应的古风化壳成熟度低,从而导致成层构造迥异和地球化学突变。  相似文献   
124.
以顾桥矿工程实践为基础,结合物理模拟实验和现场监测结果,研究了厚表土层深井卸压开采地面钻井变形破坏及其预防。结果表明:钻井破坏是地面卸压瓦斯抽采失败的关键,采动影响下地面瓦斯抽采井破坏以变形和错断为主,破坏深度不一,主要集中在松散层中下部和基岩中上部;在钻井完好情况下,将钻井终孔位置布置于断层附近、“O”型圈范围内更有利于卸压瓦斯抽采。采动引起的上覆岩层离层、应力集中、竖向破断以及厚表土层“杠杆效应”造成地面瓦斯抽采井破坏,其由下至上多次出现是导致地面井多处变形破坏的主要原因。煤层采动对工作面前方巷帮应力、顶板应力的影响范围分别可达320 m、350 m,对轨顺相对位移影响范围可达工作面前方50m和后方200m,采场中部覆岩与地表之间的相对位移量远大于采场边缘附近,更容易导致井孔破坏。采用“抗”和“让”相结合的井身结构、“上止下泄”固井–完井施工工艺以及合理的井位布置等措施,可有效防止卸压开采地面钻井变形破坏,实现瓦斯稳定高效抽采。   相似文献   
125.
测试了西藏南部岗巴剖面上白垩统宗山组上段地层中厚壳蛤不同壳层的Sr、Mn、Al、Si含量,以及碳、氧、锶同位素组成,测试结果表明:1)厚壳蛤的不同壳层(包括柱状层、珍珠层和二者间的过渡层)的碳酸盐矿物均已新生变形为成岩低镁方解石(DLMC),各种原始碳酸盐矿物(沉积低镁方解石或文石)都已不同程度地发生重结晶;2)从壳的外层(柱状层)向内层(珍珠层)方向,碳酸盐矿物重结晶作用有逐渐增强的趋势,柱状层仍具有很好的柱状结构,其平均阴极发光强度明显弱于内部的珍珠层;3)厚壳蛤不同壳层的Sr含量和δ18O值都呈现有规律的变化,从靠外部的柱状层到内部的珍珠层,Sr含量和δ18O值都逐渐降低,同样说明内部的珍珠层丢掉的海水信息相对较多;4)厚壳蛤不同壳层和体腔充填物的δ18O值都显著低于前人报道的同期海水值,说明在新生变形过程中,厚壳蛤不同壳层和体腔充填物的氧同位素都与大气水或其它成岩流体发生了交换,但柱状层的氧同位素与大气水(或其它成岩流体)的交换相对较少;5)厚壳蛤不同壳层和体腔充填物的锶、碳同位素组成与同期海水值接近,不同壳层之间也没有表现出有规律性的变化,因而在矿物的新生变形过程中,厚壳蛤的锶、碳同位素与成岩流体间的交换相对较少,同时也说明,在氧、碳、锶三种同位素中,氧很容易与成岩流体发生同位素交换,而碳、锶同位素则更多地代表了海水信息。  相似文献   
126.
黄土塬区地震勘探技术发展现状综述   总被引:1,自引:0,他引:1  
黄土塬区的地震勘探技术长期以来一直被认为”世界级”难题,其主要原因有三:一是黄土塬区复杂的地貌条件,即沟、梁、塬、峁、坡、川并存;二是复杂的地表条件,即沟壑纵横施工困难;三是复杂的表浅层条件,即地震波难以激发且能量衰减严重等。在具体分析我国黄土塬区资源分布状况与勘探实践的基础上.对黄土塬区地震勘探数据采集与资料处理的一些技术难点进行了阐述,指出今后在黄土塬区开展地震勘探工作,应从粘弹介质、连续介质的角度.进行地震波激发与传播规律的研究,从地震正演模型和室内模拟的角度,进行黄土塬区的资料采集和处理方法研究,同时要注重引进新技术,加强储层物性横向变化的预测研究。  相似文献   
127.
128.
长武黄土塬区土地利用变化对潜水补给的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
通过长武黄土塬区不同土地利用方式下深剖面土壤水分的长期定位监测以及氢氧稳定同位素示踪技术的使用,分析了该区域土地利用变化对地下潜水补给的影响。结果表明:① 降水补给地下水过程中存在着活塞流和优先流两种机制,由活塞流补给的地下水量,以休闲地居高,低产农田次之,最后是高产农田;② 随着该区域农田生产力大幅提升以及大面积农田转换为果园,地下水活塞流补给量逐年减少,加之地下水开采量增加,导致地下水位逐年下降,年均降幅达0.3 m;③ 同位素证据表明,目前长武塬区地下水补给以优先流形式为主。为了实现黄土塬区潜水资源的有效补给与可持续利用,需要合理调控土地利用结构,保持适度生产力水平。  相似文献   
129.
深海悬链线立管涡激疲劳损伤研究   总被引:1,自引:0,他引:1  
讨论海洋平台钢质悬链线式立管SCR(Steel Catenary Riser)的涡激疲劳损伤问题。对于悬链线立管外的流体,给出涡脱落频率和升力对立管作用的计算方法。悬链线立管采用索结构模型,进行动力学分析并利用模态叠加法对其进行动力响应分析。根据Palmgren-Miner线性累积损伤准则并结合S-N曲线,分析在不同流速下立管的涡激疲劳损伤。以工程中实际使用的1 500 m Spar海洋平台悬链线立管为例,对立管的涡激疲劳损伤进行了预报。并通过立管的参数研究,分别就立管外不同来流速度、立管壁厚、内部流体密度和柔性接头刚度对其疲劳损伤的影响进行了分析,得到了一些有意义的研究结果。  相似文献   
130.
基于全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)数据的雪厚反演具有低成本、低功耗、全天时采集数据的特点,但利用GNSS信噪比观测值进行雪厚反演时,观测值受噪声信号功率影响较大,反演精度较低.基于此,提出一种基于小波分解的雪厚反...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号