首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6795篇
  免费   1197篇
  国内免费   2943篇
测绘学   79篇
大气科学   211篇
地球物理   298篇
地质学   8139篇
海洋学   1283篇
天文学   62篇
综合类   492篇
自然地理   371篇
  2024年   58篇
  2023年   255篇
  2022年   321篇
  2021年   390篇
  2020年   269篇
  2019年   352篇
  2018年   264篇
  2017年   250篇
  2016年   268篇
  2015年   309篇
  2014年   531篇
  2013年   362篇
  2012年   494篇
  2011年   516篇
  2010年   382篇
  2009年   428篇
  2008年   386篇
  2007年   372篇
  2006年   537篇
  2005年   397篇
  2004年   339篇
  2003年   319篇
  2002年   326篇
  2001年   318篇
  2000年   245篇
  1999年   243篇
  1998年   239篇
  1997年   207篇
  1996年   168篇
  1995年   202篇
  1994年   182篇
  1993年   204篇
  1992年   214篇
  1991年   133篇
  1990年   111篇
  1989年   128篇
  1988年   44篇
  1987年   38篇
  1986年   20篇
  1985年   18篇
  1984年   13篇
  1983年   11篇
  1982年   8篇
  1981年   18篇
  1980年   10篇
  1979年   6篇
  1978年   9篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
151.
Natural uranium has three isotopes, ^238U, ^235U and ^234U, with natural abundances of 99.27 atom %, 0.72% and 0.0055%, respectively. Only ^235U is fissile and the production of nuclear fuel and nuclear weapons involves enrichment of uranium in ^235U. This process also results in separation of ^234U from ^238U, leaving depleted uranium (DU), with typical ^234U/^238U and ^235U/^238U activity ratios of about 0.19 and 0.013, respectively, as a waste product. The high density, high melting and boiling points and chemical stability of uranium and the availability of DU in relatively pure form mean that DU has many uses, including armour-piercing munitions. Such munitions have been developed in the UK since the 1960s and testing has been carried out by the Ministry of Defence (MoD) at firing ranges such as Dundrennan, SW Scotland and Eskmeals, NW England. The firing of DU munitions can result in the dispersion of DU and its combustion products (oxides) as aerosols or as larger fragments, with the potential for human exposure either directly at the site of detonation or via post-depositional migration in the environment. The aim of this work was to investigate the potential environmental mobility of DU by characterizing the associations of U in soil porewaters with increasing distance from a firing site. To this end, several soil cores located down-wind of the firing site at Dundrennan, near Kirkcudbright, SW Scotland, were collected in May 2006. These were sectioned on-site into 1- or 2-cm depth intervals and porewaters were isolated by centfifugation (10 minutes; 8873 g) on return to the laboratory. Following filtration through 0.2-micron cellulose nitrate filters, the porewaters were analyzed by ICP-QMS (U concentration) and ICP-OES (Fe, Al, Ca, Mg, Mn concentrations). Sub-samples were also subjected to centrifugal ultrafiltration (100, 30, and 3 kD) and to gel electrophoretic fractionation (agarose; 0.045 M Tris-borate; 20 mA, 30 minutes). Results showed that U was present at up to 4 μg/L in the soil porewater and that the associations of U varied with sample location and soil depth.  相似文献   
152.
Biological iron and manganese removal utilizing indigenous iron and manganese oxidizing bacteria (IRB hereafter) in groundwater can also be applied to arsenic removal according to our pilot-scale test. The arsenic removal probably occurred through sorption and complexation of arsenic to iron and manganese oxides formed by enzymic action of IRB. We investigated the chemical properties of iron and manganese oxides in IRB floc and the valence state of arsenic sorbed to the floc to clarify the mechanisms of the arsenic [especially As (Ⅲ)] removal. The floc samples were collected from two drinking water plants using IRB (Jyoyo and Yamatokoriyama, Japan), and our pilot - scale test site where arsenic and iron removal using IRB is under way (Mukoh, Japan). The Jyoyo and Yamatokoriyama IRB floc samples were subjected to As (Ⅲ) and As(Ⅴ) sorption experiments. The elemental composition of the floc samples was measured. XANES spectra were collected on As, Fe and Mn K-edges at synchrotron radiation facility Spring 8 (Hyogo, Japan). FT-IR and the X-ray diffraction spectra of the samples were also obtained. The IRB floc contained ca. 35 % Fe, 0.3%-3.5% Mn and 2%-6% P. The samples were highly amorphous and contained ferrihidrites and hydrated iron phosphate. According to XANES analyses of IRB, As associated with IRB was in +5 valence state when As (Ⅲ) (or As (Ⅴ)) was added in laboratory sorption test, Fe in +3 valence state, and Mn a mixture of+3 and +4 valence states. Small shift was observed in the XANES spectra of IRB on As K-edge as the equilibration time of the sorption experiment was increased. Gradual oxidation of a small amount of As (Ⅲ) associated with IRB or change in arsenic binding with sorption site were the probable mechanism.  相似文献   
153.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
154.
Uranium processing and mining activities that generate many contaminants, such as high concentrations of U (VI), sulfate and heavy metals (Zn, Cu, Ni, etc), may pose a serious threat to the groundwater resources. In recent years, considerable research has been conducted respectively on two kinds of permeable reactive barriers (PRB), including zerovalent iron (ZVI) and sulfate reducing bacteria (SRB), for in-situ removal of these pollutants from groundwater. However, little investigation has been carried out on the potential benefits of bioaugmenting ZVI barriers to enhance the elimination of the pollutants by combining ZVI with SRB systems. The main goal of this study was to conduct batch and column experiments to determine whether the combination of SRB and ZVI can function synergistically and accelerate the rate of pollutant removal. The results of anaerobic batch experiments demonstrated that although the integrated ZVI/PRB system itself has no ability to reduce and remove sulfate directly, SRB can utilize hydrogen gas produced during the slow process of ZVI corrosion as an electron donor to raise biomass yields significantly and accelerate reductive sulfate removal. In particular, ferrous cations produced as the byproduct of ZVI corrosion process reacted with hydrogen sulfide from sulfate reduction and formed iron-bearing sulfide precipitates, which can stimulate the growth of SRB and promote sulfate removal activity by eliminating the biotoxicity of hydrogen sulfide. It was also shown that secondary mineral products (pyrite/ferrous sulfide) formed as a consequence of microbial sulfate reduction and ZVI corrosion process can enhance the microbial precipitation of soluble U (VI) as insoluble uraninite(uranium dioxide).  相似文献   
155.
Low molecular weight organic acids (LMWOAs) are important components of root exudates. They play an important role in immobilizing and remobilizing contaminants in rhizospheric soil. Effects of four LMWOAs on the sorption and desorption behavior of p-chlorophenol by yellow earth was studied in batch mode. The results showed that the previous application of LMWOAs to enhanced adsorption capacity of p-chlorophenol of the soil in the order of maleic acid〉malic acid〉oxalic acid〉citric acid. However, when LMWOAs were applied to soil where p-chlorophenol had been previously adsorbed, substantial p-chlorophenol was desorbed from soil by oxalic acid, whereas citric acid, malic acid and maleic acid didn't desorb as much p-chlorophenol from soil as deionized water.  相似文献   
156.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   
157.
158.
In polluted aquatic systems, toxic metals are often accumulated in bottom sediments. They are, however, not necessarily stored definitively because diagenetic processs can modify redox, pH and even the amount of complexing ligands, releasing the trace metals back into the pore waters and the water column. Especially the labile metal fraction in the pore waters is important since this is the bioavailable fraction determining the bio-toxicity of the sediments. The goal of our study was therefore to assess, with novel sampling techniques, this bioavailable metal fraction in the pore waters as well as the flux towards the overlying water column. High-resolution profiles of trace metals in pore waters of marine and riverine sediments were assessed by DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) gel techniques. The DET technique uses a diffusive gel layer that equilibrates with the aquatic system and with this technique the concentrations of total dissolved trace metals are obtained directly. The DGT technique uses an acrylamide diffusive gel backed by a resin gel (Chelex) which binds trace metals. With the DGT technique only labile species of selected metals can be captured. According to the redox potential measurements, the marine sediments were suboxic (200 mV to -220 mV versus Ag/AgCl electrode), while the riverine sediments were completely anoxic (-160 mV to -220 mV versus Ag/AgCl electrode). This redox potential was apparently controlling the trace metals species in the pore waters: for example a strong correlation between Mn and Co was found in the riverine sediments (for DET and DGT sampling), while in the marine sediments trace metals presented various behaviors.  相似文献   
159.
A simple and rapid procedure to extract organochlorine pesticides (OCPs) from sediments by means of microwave energy is proposed. Sediment samples were irradiated with microwaves in a closed vessel system while immersed in hexane-acetone (1 : 1, v/v). The sample extracts were cleaned up using solid phase extraction with Florisil as adsorbent. Pesticides were eluted with hexane-ethyl acetate (80 : 20, v/v) and determined by gas chromatographic separation with electron capture detection. Three oven programs were assayed with two different solvent mixtures in order to achieve adequate experimental conditions for the complete extraction of organochlorine pesticides from the matrix. Different variables such as the composition of extraction solvent,  相似文献   
160.
All geochemical measurements require the taking of field samples, but the uncertainty that this process causes is often ignored when assessing the reliability of the interpretation, of the geochemistry or the health implications. Recently devised methods for the estimation, optimisation and reduction of this uncertainty have been evaluated by their application to the investigation of contaminated land. Uncertainty of measurement caused by primary sampling has been estimated for a range of six different contaminated land site investigations, using an increasingly recognized procedure. These site investigations were selected to reflect a wide range of different sizes, contaminants (organic and metals), previous land uses (e.g. tin mining, railway sidings and gas works), intended future use (housing to nature reserves) and routinely applied sampling methods. The results showed that the uncertainty on measurements was substantial, ranging from 25% to 186% of the concentration values at the different sites. Sampling was identified as the dominant source of the uncertainty (〉70% of measurement uncertainty) in most cases. The fitness-for-purpose of the measurements was judged using the optimized contaminated land investigation (OCLI) method. This identifies the optimal level of uncertainty that reduces to overall financial loss caused by the measurement procedures and the misclassification of the contamination, caused by the uncertainty. Generally the uncertainty of the actual measurements made in these different site investigations was found to be sub-optimal, and too large by a factor of approximately two. The uncertainty is usually limited by the sampling, but this can be reduced by increasing the sample mass by a factor of 4 (predicted by sampling theory). It is concluded that knowing the value of the uncertainty enables the interpretation to be made more reliable, and that sampling is the main factor limiting most investigations. This new approach quantifies this problem for the first time, and allows sampling procedures to be critically evaluated, and modified, to improve the reliability of the geochemical assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号