首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   33篇
  国内免费   49篇
测绘学   20篇
大气科学   6篇
地球物理   18篇
地质学   151篇
海洋学   11篇
综合类   16篇
自然地理   50篇
  2023年   4篇
  2022年   16篇
  2021年   13篇
  2020年   29篇
  2019年   28篇
  2018年   11篇
  2017年   17篇
  2016年   10篇
  2015年   17篇
  2014年   20篇
  2013年   19篇
  2012年   8篇
  2011年   8篇
  2010年   1篇
  2009年   12篇
  2008年   4篇
  2007年   4篇
  2006年   10篇
  2005年   11篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
101.
王海学  付晓飞  付广  吕延防  杜微  刘桐汐 《地球科学》2014,39(11):1539-1546
野外观察、典型地震解剖和物理模拟证实, 只要岩石存在能干性差, 断层具有典型垂向分段生长特征.岩石能干性差异决定断层演化历经3个阶段: 下部断层形成、断裂上下分段和贯通性断裂形成.以三肇凹陷为例, 应用岩石力学特征和断层相关褶皱理论, 证实扶杨油层砂岩层段普遍形成断裂, 青一段泥岩阻止下部断层向上传播, 从而形成断层垂向分段生长现象.结合油藏精细解剖表明, 三肇凹陷扶杨油层"倒灌"运移的主要油源断层是成藏期活动、沟通源储且垂向分段生长的断裂.   相似文献   
102.
西南地区是我国地质灾害发育数量最多、发生频率最高的地区之一,地质灾害隐患点总数约占全国总数的30%,为提升西南地区地质灾害风险管控水平,在总结西南地区地质灾害风险评价及管控现状基础上,分析了目前风险管控中技术层面和管理层面存在的问题与不足,提出了基于地质灾害风险防控专业化、全民化和体系化等模式的地质灾害风险“点面双控”体系构建思路,并对未来西南地区地质灾害风险管控制度化、保险化及智能化趋势进行了展望,成果可为西南地区地质灾害风险系统化防控提供科学参考。  相似文献   
103.
针对传播内容不足、传播途径狭隘等困境,浙江省地震局微信公众号“震道”调整运营理念,通过引入中国地震局干部教育网络学院微平台、展开首届线下同名防灾减灾公益漫画大赛、组织线上线下双向实体科普馆互动活动等多方位打造“震道”影响力,初步形成“震道”品牌效应。  相似文献   
104.
对冷家溪群及其上覆板溪群斑脱岩中的锆石进行研究,测得冷家溪群小木平组斑脱岩SHRIMP锆石U-Pb年龄(822Ma±10Ma)和上覆板溪群张家湾组斑脱岩锆石U-Pb年龄(802.6Ma±7.6Ma),结合“江南造山带”东部变质基底双桥山群和西南地区四堡群、下江群的SHRIMP锆石U-Pb年龄,将冷家溪群与其相应的江南古陆变质地层明确定位于新元古界。该年龄对重新界定“武陵运动”的时限和进行同期地层的区域对比、构造演化研究都有重要意义。冷家溪群与双桥山群、梵净山群、四堡群、双溪坞群一样,均为低变质绿片岩系,构成了江南古陆地区的变质基底。多年来冷家溪群一直划归中元古界,并且视为“武陵运动”的主体,其时代的定位将影响整个江南古陆变质基底的地层划分和对比,也将制约江南造山带的地质背景和成矿条件解疑。上述锆石U-Pb年龄不仅标示了湘东地区新元古代地层的时代,也为江南古陆中部变质基底提供了新的、精确的年代学数据。  相似文献   
105.
In different areas of the Western Desert of Egypt, the Abu Roash “G” Member exhibits either a reservoir or source affinity. Thus, thirteen cutting samples covering the Abu Roash “G” Member were selected from the Nest-1A well at Matruh Basin to investigate its hydrocarbon source potential. Palynological age dating of the section that is calibrated with foraminifera and ostracodes enabled a proper identification of the “G” Member. Detailed analysis of the vertical distribution of particulate organic matter of this member shows two palynofacies types. PF-1 reflects an outer middle shelf depositional environment of prevailed reducing (suboxic-anoxic) conditions for the organic-rich shales of the lower “G” Member (samples 1–8). While, PF-2 reflects a minor regression that resulted in deposition of another organic-rich shales of the upper “G” Member (samples 9–13) in an inner middle shelf setting under the same prevailing reducing (suboxic-anoxic) conditions.Organic geochemical analysis reveals good to very good potential of the “G” Member as a hydrocarbon source rock (1.8–2.41, avg. 2.15 total organic content wt %). It also shows good to very good petroleum potential (PP: 4.8–11 , avg. 8 mg HC/g rock). Pyrolsis and palynofacies analyses show kerogen type II for the lower “G” Member (samples 1–8), which is characterized by high Hydrogen index (HI: 396 and 329 mg HC/g TOC at depths 1500 and 1560 m) and very high dominance of oil-prone material (amorphous organic matter “AOM”, marine palynomorphs, and sporomorphs) and very rare occurrence of gas-prone material (brown phytoclasts). The upper “G” Member (samples 9–13) shows kerogen type II-III, which is characterized by a lower HI value of 213 mg HC/g TOC at depth 1340 m and it contains fewer amounts of gas-prone material and relatively lower AOM and marine palynomorphs in comparison to the upper “G” Member. Maturation parameters Tmax (430–433 °C), production index (PI: 0.1 mg HC/g rock), and thermal alteration index (TAI: 2+) indicate the lower “G” Member has already entered the early oil-window kitchen, and it is expected to produce oil. The upper “G” Member is expected to produce only oil with no gas shows, because it is marginally mature (Tmax 426 °C, PI 0.2, TAI 2). The source potential index (SPI: 5.3 t HC/m2) of the “G” Member shows it as currently generating moderate quantities of oil in the area of Nest-1A well.Consequently, the organic-rich shales of the “G” Member are suggested here as a promising, active oil source rock in that extreme northwestern part of the Western Desert of Egypt. However, for commercial oil recovery from the Abu Roash “G” Member, it is highly recommended to explore the depocentre of Matruh Basin at about 150 km east the Nest-1A well.  相似文献   
106.
西南极乔治王岛菲尔德斯半岛火山岩地质初步研究   总被引:3,自引:1,他引:2       下载免费PDF全文
西南极乔治王岛菲尔德斯半岛主要由基性熔岩、火山碎屑岩及薄层沉积岩组成,并有次火山岩体及脉岩发育.野外观察及K—Ar,Rb—Sr全岩年龄说明岩石形成于始新一渐新世.主要元素和微量元素地球化学特征说明岩石属低钾高铝钙碱性玄武岩,但具有拉斑玄武岩的某些特征,是岛弧火山活动的产物.岩层呈平缓单斜,发育有近同期及后期走滑正断层,以及由断层活动形成的局部以称褶皱.  相似文献   
107.
外高加索国家地处欧亚十字路口,是古丝绸之路上的重要国家,也是“一带一路”的核心节点,区位战略意义重大。该文分析了外高加索三国自1991年独立以来中国与其贸易发展历程,借助HM指数和贸易互补性指数,从贸易总体格局和贸易商品特征两个角度分析双向贸易关系,并探究了影响其贸易发展的因素。结果表明:1)中国与外高加索三国长期保持贸易往来,贸易总额呈波动攀升趋势,阶段性特征明显;贸易差额起伏变化,整体长期维持贸易顺差状态;外高加索三国对中国的贸易依赖性显著大于中国对其依赖性。2)中国对外高加索三国出口商品互补性显著高于进口互补性,说明与作为中国进口商品来源国相比,外高加索三国作为中国商品的消费市场更具优势;中国对外高加索三国出口商品类型较为相似,结构呈集中与多元并存态势,主要出口商品逐步由资源、劳动密集型的低附加值商品向技术密集型等高附加值商品转变,而中国自外高加索三国进口的商品类型虽有所扩展,但主要类型仍较为单一,高度集中于未加工或半加工类资源型商品。3)地理距离、政局稳定性、产业结构、地缘关系、贸易环境及便利性是影响中国与外高加索三国贸易发展的主要因素。  相似文献   
108.
The byrrhid subfamily Lidryopinae subfam. nov. is proposed for Lidryops occultus gen. et sp. nov. described from Lower Cretaceous “opaque” amber originated from Archingeay-Les Nouillers, Charente-Maritime, southwest France which was studied using propagation phase contrast X-ray synchrotron microtomography at the European Synchrotron Radiation Facility (Grenoble). This byrrhid subfamily differs from members of the closely related groups (Chelonariidae, Limnichidae, Dryopidae, Elmidae, Lutrochidae) in the set of characters including the moderately convex dorsum, the subpectinate antennae, the five-segmented tarsi with strongly lobed tarsomeres 1–4, subsecuriform ultimate maxillary and labial palpomeres. An assumption on probable lifestyle of Lidryops occultus gen. et sp. nov. is proposed on the basis of structural peculiarities. A short review of the byrrhid fossil record and its analysis are made.  相似文献   
109.
It is generally accepted that pegmatites are derived from large masses of granite but, even in areas where complete mineralogical, chemical and isotopic datasets are available, the relation between pegmatites and host granitic rocks or nearby plutons is usually not simple to address. The Pavia pluton, located in the Ossa-Morena Zone (Iberian Massif), is a multiphase intrusive body constructed over ∼11 m.y. by the amalgamation of several batches of magma. At the first glance, pegmatites seem to constitute a very homogeneous pegmatite field. They are mainly “intragranitic” thin tabular dikes, unzoned, layered, or with simple internal structure and are composed by the ordinary minerals that constitute the different classes of igneous rocks. They also present identical whole rock major and trace elements geochemistry and isotopic signature [(87Sr/86Sr)i = 0.70434–0.70581, ɛNdt = −1.3 to −3.7 and δ18O = 8.2–9.6‰] but, based on previously published geochronological data, three generations of pegmatites were identified. Two of these are coeval with the emplacement of the host granites (s.l.) at 328 Ma and ca. 324 Ma. The other is related to a later magmatic event at 319–317 Ma. A similar and rather juvenile source is suggested for host granites (s.l.) and pegmatites but a simple and continuous process of intra-chamber magmatic differentiation is not supported by our data. It is suggested that pegmatites derived from slightly evolved batches of magma that interacted with fresh, newly emplaced, batches (from the same or from a similar source) with limited interaction with the crust. Therefore, the Pavia pegmatites do not represent the final products of magmatism at this level of the crust but slightly differentiated products of different batches of magma. This study demonstrates how long-lived magmatic systems can potentially affect the recognition of granite–pegmatite genetic relationships.  相似文献   
110.
钻孔灌注桩的孔底沉渣和桩侧泥皮限制了灌注桩的应用,而灌注桩后压浆技术的应用,较好地解决了这一难题。结合工程实际,叙述了后压浆技术的施工技术要点和施工控制措施,分析了影响注浆管“开塞”的因素及确保成功“开塞”的技术措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号