首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12897篇
  免费   3208篇
  国内免费   3023篇
测绘学   373篇
大气科学   1868篇
地球物理   6019篇
地质学   4305篇
海洋学   4351篇
天文学   185篇
综合类   908篇
自然地理   1119篇
  2024年   91篇
  2023年   239篇
  2022年   438篇
  2021年   501篇
  2020年   560篇
  2019年   731篇
  2018年   581篇
  2017年   579篇
  2016年   596篇
  2015年   681篇
  2014年   784篇
  2013年   769篇
  2012年   825篇
  2011年   817篇
  2010年   667篇
  2009年   819篇
  2008年   783篇
  2007年   939篇
  2006年   822篇
  2005年   767篇
  2004年   706篇
  2003年   629篇
  2002年   560篇
  2001年   462篇
  2000年   484篇
  1999年   442篇
  1998年   415篇
  1997年   378篇
  1996年   367篇
  1995年   337篇
  1994年   297篇
  1993年   263篇
  1992年   203篇
  1991年   158篇
  1990年   110篇
  1989年   79篇
  1988年   79篇
  1987年   52篇
  1986年   29篇
  1985年   14篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1979年   9篇
  1978年   11篇
  1977年   6篇
  1954年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
2.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
Two high resolution spectra of the hot RCrB star DY Cen in the red region are compared. The photospheric absorption lines show a radial velocity variation of 12 kms-1 between 1989 July and 1992 May. Emission components to some CII lines present in 1989 are almost entirely absent in 1992. Nebular forbidden lines of [OI], [NII] and [SII] appear unchanged from 1989 to 1992  相似文献   
5.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
7.
8.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
9.
Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has some drawbacks according to fuzzy logic principles. This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.  相似文献   
10.
The direction and intensity of karst processes can be deeply affected by soil physical and chemical variations which were resulted from land use. Taking Nongla Fengcong depression area, Mashan County, Guangxi as an example, authors discussed the impact of land use on karst processes based on the data of field limestone tablet. The results showed that the corrosional rates at varied soil depth are quite different. Corrosional rate in woodland and orchard is mostly bigger than 20 mg/a, which is much higher than that in tilled land and shrub. Generally, corrosional rate decreased from orchard, woodland, tilled land, fallow land and shrub successively, in which soil organic matter (OM) and soil pH are two major controlling factors: corrosion process is controlled remarkably by soil OM in woodland and orchard. The higher the organic matter content is and the less the pH value is, the higher the corrosional rate is. Owing to lower organic matter content, the corrosional rate is mainly affected by soil CO2 in tilled land and shrub.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号