首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   21篇
  国内免费   26篇
测绘学   11篇
大气科学   51篇
地球物理   8篇
地质学   18篇
海洋学   8篇
综合类   15篇
自然地理   29篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   12篇
  2016年   4篇
  2015年   7篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   11篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
排序方式: 共有140条查询结果,搜索用时 812 毫秒
41.
介绍广西局地性洪涝、流域性洪涝监测预警指标研究、广西洪涝监测系统及洪涝监测业务服务开展情况,并对GIS技术在广西洪涝监测预报评估中的应用前景进行了分析。  相似文献   
42.
旱涝周期和海震调温假说的新证据   总被引:1,自引:0,他引:1       下载免费PDF全文
杨学祥  杨冬红 《地震工程学报》2005,27(4):400-400,382
据中新社兰州10月21日电,中国科学院寒区旱区环境与工程研究所蓝永超研究员根据代表黄河上游流域径流动态变化的唐乃亥水文站1920年至2004年的径流系列统计资料,以及此间数十个气象站四十余年的降水观测数据,分析得出的初步结论显示,从上世纪20年代初到90年代,黄河大体上经历了5个枯水期和4个丰水期。每个丰、枯水期段持续的时间长短不一,枯水期持续时间为4~15年,平均为9年;丰水段持续时间为7~14年,平均为9.25年。总体上黄河上游每个丰、枯水周期平均持续时间基本相同,一个完整的丰枯循环周期大约在18年左右[1]。18.6年是典型的潮汐周期。月…  相似文献   
43.
韩长春 《气象》1996,22(7):46-48
作者以淮阴市历年的雨涝,干旱实况为依据,参考农业,水利部门统计的受灾面积,防洪排涝能力,农作物不同生育期的需水量等因素,按季节分析雨涝,干旱灾害与雨量关系,确定年季不同级别的旱涝指标,其分析结论是40多年来旱涝灾年发生的频数超过正常年,且涝灾多于旱灾,重于旱灾,但秋旱多于秋涝。  相似文献   
44.
选取频遭洪涝灾害威胁与危害的沿海平原低地,试图建立描述洪涝强度的等级测度模式,并分析其减灾意义。  相似文献   
45.
太湖流域洪涝灾害评估模型   总被引:3,自引:1,他引:3  
在地理信息系统支持下建立了太湖流域DEM模型,并建立了全流域12类共24种土地利用类型、2194个圩区、1012个乡镇和94个报汛站点的空间数据库及属性数据库。在此基础上,根据实时报汛资料,通过插值得到各乡汛期圩外水位和降雨量。圩区采用排涝计算圩内内涝水量再与DEM叠加,非圩区用乡最高水位与DEM叠加,可获得全流域淹没水深栅格数据。统计不同乡镇、不同土地类型、不同淹没水深的淹没面积,并根据当年的社会经济数据,建立了太湖流域洪涝灾害损失评估模型。对1999年太湖流域洪涝灾害评估结果表明,模型具有一定的精度,可为流域防洪减灾决策提供依据。  相似文献   
46.
基于雨洪安全格局的城市低影响开发模式研究   总被引:3,自引:0,他引:3  
焦胜  韩静艳  周敏  蔡勇  韩宗伟  黎贝 《地理研究》2018,37(9):1704-1713
城市调蓄用地总量减少、泄洪网络被建设用地割裂、汇流用地与建设用地重叠等是造成城市内涝灾害的主要原因。本文尝试在产流源头、产流途径以及汇流地三个层面,充分利用原有自然雨洪调蓄系统,建立能够消纳极端暴雨水的城市低影响开发模式,以长沙市苏圫垸为例,基于地形数据、水文气象数据,运用ArcGIS空间分析和SCS水文模型,模拟极端降雨的雨洪淹没区和雨洪廊道,并建立雨洪安全格局。根据年径流总量控制率85%的海绵城市建设目标,结合模型模拟确定苏圫垸低影响开发设施位置及规模,即开发后应保留雨洪斑块面积228.2 hm2,控制水量107.5万m3,雨洪廊道面积51.5 hm2,控制水量10.1万m3。可为探索基于极端气候下内涝防控的海绵城市建设新模式提供参考。  相似文献   
47.
Finite element modelling of the saturated–unsaturated surface–subsurface flow mechanisms operative in a small salinized catchment in south‐western Australia was used to help define the flow system and explain the causes of waterlogging and salinization there. Data available at the site from a previous study were used to obtain a first approximation to the flow system. Altering the properties of some of the strata gave a closer calibration. It was found that the modelled saturated hydraulic conductivity of the B horizon in the duplex soil zone needed to be at least an order of magnitude lower than that measured in order to reproduce the perching conditions observed in the field. Also, the model indicated the influence of a doleritic dyke, whose presence was confirmed by field measurement. Our analysis showed that there were two main flow systems operating in the hillslope. The first, and most dominant, was the recharge occurring through the upslope gradational soil zone and percolating down to both the deeply weathered regolith and the basal aquifer. The second flow system is an unsaturated flow system operating in the high permeability A horizon in the downslope duplex soil zone. The first system is primarily responsible for the saline seepage zone in the valley bottom. The second contributes to the waterlogging and perching occurring upslope of the seepage zone. Vertical flow through the higher permeability B horizon in the gradational soil zone in the upper slopes is a major contributor of recharge. Recharge by flow through macropores occurs where, but only where, perched aquifers develop and allow the macropores to be activated. Areas with perched aquifers occurred in downslope locations and near a doleritic dyke located upslope. Thus, the area where macropore recharge occurred was not large. The recharge rate required to maintain the piezometric levels at present values is only about 30 mm/yr (about 5% of the annual rainfall). The piezometric levels under the upper part of the catchment varied greatly with only small changes in recharge rate. A 50% reduction in recharge rate had the effect of reducing the length of the seepage zone at the end of winter by 40%. Changes in recharge rate had little effect on the extent of the perched aquifer at the end of winter. Deep‐rooted perennial forages, shrubs or trees on the gradational soil zone in the upper part of the catchment and on the zones upslope of geological barriers to flow would be required to reduce the recharge and to allow for rehabilitation of the saline valley floor. Waterlogging associated with the perched water table in the bottom part of the catchment would be best addressed by tree plantations located just upslope of the salinized zone in the valley floor. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
48.
49.
利用少雨旱区华北冬麦主产区河北固城站的电动防雨棚,遮去自然降水,通过人工控制灌水形成土壤渍水、高湿、干旱和对照,冬小麦花后通过测定籽粒灌浆进程和地上生物量以及产量构成要素,解析不受阴雨和低温胁迫影响下土壤渍水对冬小麦籽粒灌浆速率及产量形成的胁迫效应。结果表明,随土壤水分的减少,冬小麦灌浆速率降低,灌浆持续日数缩短;灌浆期土壤高湿有增产效应,理论产量增产5.87%,土壤渍水出现减产,理论产量减产1.50%;高湿和渍水的收获指数比对照略有提高,并均高于0.5000;〖JP2〗干旱胁迫下,收获指数比对照低0.1130~0.1633。〖JP〗北方旱区灌溉解除了气候干旱对作物需水胁迫,晴好天气光照充足,日较差大,作物产量提高,土壤水分是影响北方冬小麦挖掘光温生产潜力和提高单产的关键限制因素。研究结果为应对气候变化引起极端降水事件对农业生产的影响,尤其是科学评估旱、涝灾害对北方旱区农作物的影响有一定参考意义。  相似文献   
50.
Four images of 1991 AVHRR, 2003 and 2007 MODIS were used to extract waterlogging inundated water of three years, and three inundated water maps were overlaid to estimate waterlogging affected frequency. Based on waterlogging affected frequency, waterlogging hazard of pixel scale was assessed. According to the weighed score of area percentage of different waterlogging affected frequency in 13 counties/cities of Lixiahe region, waterlogging hazard rank of every county/city was assessed. Waterlogging affected frequency map and 1 km× 1 km grid landuse map were used to assess waterlogging risk of pixel scale; and then waterlogging risk rank of every county/city was assessed by the similar method by which waterlogging hazard rank of every county/city was assessed. High risk region is located mainly in core zone of Lixiahe hinterland, medium risk region is adjacent to high risk region, and low risk region is located in the most outlying area of risk zone and mainly in south to middle part of Lixiahe region. Xinghua and Gaoyou belong to high risk city, Jiangyan belongs to medium risk city, and the other counties/cities have low or lower waterlogging risk. The method of assessing waterlogging risk in this paper is simple and applicable. This paper can provide guidance for the waterlogging risk analysis in broader area of Huaihe River Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号