首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   89篇
  国内免费   101篇
测绘学   4篇
大气科学   6篇
地球物理   430篇
地质学   318篇
海洋学   37篇
天文学   2篇
综合类   20篇
自然地理   39篇
  2023年   2篇
  2022年   16篇
  2021年   14篇
  2020年   20篇
  2019年   12篇
  2018年   13篇
  2017年   17篇
  2016年   11篇
  2015年   12篇
  2014年   30篇
  2013年   24篇
  2012年   15篇
  2011年   28篇
  2010年   10篇
  2009年   62篇
  2008年   95篇
  2007年   51篇
  2006年   56篇
  2005年   57篇
  2004年   40篇
  2003年   42篇
  2002年   18篇
  2001年   15篇
  2000年   48篇
  1999年   38篇
  1998年   32篇
  1997年   17篇
  1996年   19篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
81.
At least 12 silicic tephra layers (SILK tephras) erupted between ca. 6600 and ca. 1675 yr BP from the Katla volcanic system, have been identified in southern Iceland. In addition to providing significant new knowledge on the Holocene volcanism of the Katla system which typically produces basaltic tephra, the SILK tephras form distinct and precise isochronous marker horizons in a climatically sensitive location close to both the atmospheric and marine polar fronts. With one exception the SILK tephras have a narrow compositional range, with SiO2 between 63 and 67%. Geochemically they are indistinguishable from ocean transported pumice found on beaches in the North Atlantic region, although they differ significantly from the silicic component of the North Atlantic Ash Zone One (NAAZO). Volumes of airborne SILK tephra range from 0.05 to 0.3 km3. We present new isopach maps of the six largest layers and demonstrate that they originate within the Katla caldera. The apparently stable magma system conditions that produced the SILK tephras may have been established as a consequence of the eruption of the silicic component of NAAZO (ca. 10.3 ka) and disrupted by another large‐scale event, the tenth century ad Eldgjá eruption (ca. 1 ka). Despite the current long repose, silicic activity of this type may occur again in the future, presenting hitherto unknown hazards. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
82.
腾冲火山区地表垂直形变分析   总被引:11,自引:3,他引:8  
对腾冲火山区1998~2000年的3期垂直形变资料进行了分析,进而利用相关资料得出与计算有关的参数,再用多元Mogi模型反演了岩浆房的位置和大小,所得出的结果与地震层析反演结果基本相似。分析反演结果,认为火山区可能存在多个岩浆房,并有岩脉相通。  相似文献   
83.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   
84.
Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.  相似文献   
85.
Composition and exhalation flux of gases from mud volcanoes in Taiwan   总被引:3,自引:0,他引:3  
Many mud volcanoes are distributed along the tectonic sutures in southern Taiwan and can be divided into five zones based on their relative positions in different tectonic domains. Most active mud volcanoes are exhaling methane-dominated gases. Nevertheless, some gases show unusual carbon dioxide-dominated and/or nitrogen-excess compositions. This implies that there are multiple sources for the gas compositions of mud volcanoes in Taiwan.For better understanding the total amount of exhalation gases and its flux, the gas flow and compositions were continuously measured in the interval of two minutes at Chung-lun (CL) bubbling mud pool for a few months. The major compositions of gases exhaling from this site were 75~90% of CO2 and 5~12% of CH4. The amount of gases exhaling from the mud pool can be estimated to be about 1.4 ton/year for CH4 and 28 ton/year for CO2, respectively. The preliminary results of exhaling gas flux from the major vents of representative active mud volcanoes, yielded an estimated total CH4 output of the mud volcanoes in Taiwan of ca. 29 ton/year during quiescent period.  相似文献   
86.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
87.
由相对地热梯度推断的腾冲火山区现存岩浆囊   总被引:15,自引:6,他引:15  
为利用温泉来研究和监测腾冲火山区的现今岩浆分布并探讨其活动性,提出相对地热梯度的概念:假设各热田或水热活动区的热储深度相等,则热储温度与地表温泉温度之差为该地相对地热梯度。通过对前人在该地区获得的温泉的基本要素和温泉水化学分析数据分析,选取了159个温泉计算相对地热梯度。用这159个数据,通过克里金插值方法获得了腾冲火山区的相对地热梯度平面分布。结果发现腾冲火山区有3个相对地热梯度在100℃以上的高值区域。结合其他资料,认为腾冲火山区现今存在3个岩浆囊,它们的几何尺度为19~28kin,深度为4~12km或更深,并且目前的活动性各不相同。  相似文献   
88.
 For first time, during 1991, seismic activity was recorded during an eruption at Colima volcano. We analyze these data to obtain a stress pattern using a composite focal mechanism technique. From the analysis of regional seismicity, the Tamazula Fault and the Armeria River appear as active features and the dip of the slab east of the Jalisco Block is approximately 12°. Southwest of Colima volcano a vertical alignment of seismic events was observed. We estimate five different composite focal mechanism solutions from our data set, which indicate a change of the stress field at the volcano after the 1991 eruption. These solutions suggest that the stress field in the volcanic edifice was controlled by stresses related to the emplacement of magma superimposed on the regional stress field. No evidence of active local faults in the volcanic edifice was found. We propose a model for the eruptive process that involves tilting of the volcanic edifice. Received: 15 October 1995 / Accepted: 26 October 1998  相似文献   
89.
长白山天池火山——多成因中央式火山   总被引:2,自引:0,他引:2  
长白山天池火山属新生代多成因中央式火山,也是我国最大的一座具潜在危险的活火山。火山主体由早期玄武岩盾、中期粗面岩锥和晚期伊格尼姆岩席组成。天池火山布里尼喷发柱高度最高达25 km,柱体最大宽度为半径12~13 km。天池破火山口塌陷过程可以分为四期,分别位于造锥喷发阶段和造伊格尼姆岩喷发阶段。本文对天池火山未来可能的火山灾害类型及范围也作了初步预测。  相似文献   
90.
龙冈火山群金龙顶子火山喷发发生在距今1500年前,其火山喷发物中所含的幔源橄榄岩包体是我国在最新火山喷发物中所发现的幔源包体。这些包体以普遍含有韭闪石为特征。包体的结构和位错构造反映这些包体在上地幔条件下经历过一定程度的变形作用。包体的平衡温度大多数集中在800~950℃之间,只有个别样品温度达到1050℃;平衡压力大多数集中在1.0~1.5 GPa之间。由包体平衡温度、压力得到的上地幔地温线稍低于中国东部由新第三纪包体得到的上地幔地温线,但接近第四纪包体得到的地温线。包体在上地幔条件下变形时的差异应力在30~44MPa,应变速率为10-18s-110-15s-1。角闪石的出现反映上地幔流体的渗透及交代作用。金龙顶子火山发的玄武岩浆直接来自35~50km的上地幔顶部。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号