首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   93篇
  国内免费   101篇
测绘学   6篇
大气科学   19篇
地球物理   203篇
地质学   408篇
海洋学   60篇
天文学   4篇
综合类   14篇
自然地理   104篇
  2024年   6篇
  2023年   13篇
  2022年   12篇
  2021年   24篇
  2020年   34篇
  2019年   34篇
  2018年   19篇
  2017年   23篇
  2016年   22篇
  2015年   21篇
  2014年   38篇
  2013年   66篇
  2012年   27篇
  2011年   23篇
  2010年   23篇
  2009年   37篇
  2008年   24篇
  2007年   38篇
  2006年   34篇
  2005年   37篇
  2004年   28篇
  2003年   26篇
  2002年   32篇
  2001年   14篇
  2000年   24篇
  1999年   9篇
  1998年   22篇
  1997年   16篇
  1996年   15篇
  1995年   13篇
  1994年   13篇
  1993年   13篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有818条查询结果,搜索用时 12 毫秒
61.
论山东东营、惠民盆地油田水与油气聚集关系   总被引:1,自引:0,他引:1  
李春光 《地质论评》1994,40(4):340-346
山东东营、惠民盆地的油源断裂,即沟通生油岩与非生油岩的同生断裂发育区,出现了油田水的高含盐度分布带。它不仅与已知油气藏的分布相一致,而且水的含盐度异常值与石油储量之间呈正相关。笔者以东辛、现河庄和临商油田为例,分析了油田水与油气藏形成的成因和伴生关系,还用相关曲线定量预测了盆地新区石油地质储量,并经钻探证实其可靠性。  相似文献   
62.
多级汇水盆地的自动提取   总被引:1,自引:0,他引:1  
利用多级汇水盆地在频率城(或波数域)中的频率差异,通过滤波方法逐级分离,并提取它们,实验证明,该方法效果较好。  相似文献   
63.
Ingrid Anne Munz   《Lithos》2001,55(1-4):195-212
Fluid dynamics in sedimentary basins is of tremendous interest, both from a scientific and an economic point of view. Integration between fluid inclusion and present-day fluid data provides the time aspect necessary for reconstruction of fluid flow paths, and can be used for mapping fluid dynamics both on a regional basin scale or on the more local scale of petroleum reservoirs. This paper presents a review of analytical and modelling methods for petroleum in fluid inclusions. Essentially, four types of data for petroleum inclusions can be established through analysis and modelling: (1) textures (which give indirect information of the time aspect), (2) fluid composition, (3) fluid properties and (4) pressure–temperature of trapping. During the last decade, development of analytical methods for determination of inclusion fluid compositions has taken place. Traditional correlation studies for characterisation of maturity and source facies may now therefore include fluid inclusion data. The development has also been directed towards an improved understanding of the physical properties of petroleum inclusions. Although these methods are in their early stages concerning precision and accuracy, data necessary for fluid flow modelling, such as fluid densities, viscosities, pressure and temperature, can be estimated.  相似文献   
64.
65.
层序地层学方法及其在陆相湖盆研究中的应用   总被引:29,自引:2,他引:29  
针对中国中、新生代陆相湖盆的特征,从沉积盆地的构造和边缘背景对海相层序地层的影响出发,讨论了湖水面相对变化、沉积物供给、气候等对湖相层序地层的控制作用,明确指出两种背景条件具有本质差异,海相层序地层学方法不能简单套用于内陆盆地分析。  相似文献   
66.
通过新发现的古生物资料分析,确定了赣西北修水、武宁地区的武宁、三都及马坳盆地的地层时代。对3个盆地的沉积相进行了详细的划分和描述,查明其为冲积扇沉积类型;划分出22个岩相,归属于泥石流、泥流、颗粒流、水道(包括主水道和分枝水道2个次级类型)、片流、筛积和洪泛7个沉积类型。重力流沉积分布在扇根或主要沉积旋回的底部,其类型的差别与邻近物源区的岩性有关;分枝水道、片流及筛积主要分布在扇中,交错层理及砾石叠瓦状构造发育,主要呈现牵引流特征;扇缘主要为洪泛沉积夹少量决口扇成因的砂砾岩透镜体,钙结壳发育,反映了一种干旱强蒸发的古气候环境。  相似文献   
67.
内蒙西部银根-额济纳中生代盆地群叠置类型与勘探领域   总被引:1,自引:1,他引:1  
内蒙西部银根-额济纳盆地群是在前古生代基底上发育起来的中、新生代“叠置型”盆地群。构造演化经历了三叠纪的热拱隆张阶段、早中侏罗世的初始裂谷盆地阶段、早白垩世的裂谷盆地发育阶段、晚白垩世的引张坳陷阶段、第三纪到第四纪的陆内聚敛挤压阶段。主要形成了下白垩统半深湖相烃源岩,其次为中下侏罗统煤系烃源岩。根据构造层之间的叠置关系,可划分为完全叠置型、基本叠置型、迁移叠置型3种盆地(凹陷)类型。不同叠置类型盆地(凹陷)的烃源岩发育特征、各类圈闭发育特征不同,油气成藏条件差别较大,勘探方向和勘探领域不同。根据裂谷小湖盆的沉积发育特征,应围绕沉积“洼槽”中心的烃源岩开展近源勘探,分别指出了不同叠置型盆地(凹陷)的勘探领域:叠置型盆地(凹陷)主要以控盆断裂带的滚动背斜、缓坡带的岩性、地层不整合圈闭为主要勘探领域;基本叠置型盆地(凹陷)主要以中央断裂隆起构造带的断鼻、断块圈闭为主要勘探领域;迁移叠置型盆地(凹陷)主要以不整合圈闭和缓坡带的岩性圈闭为主要勘探领域。  相似文献   
68.
ABSTRACT

We discuss the 2018 publication that reports petrographic, heavy mineral data, mineral chemistry, and zircon geochronology for Oligocene sandstones in the Cerro Pelón area in southern Mexico Sureste basin. As the title of their paper says, the goal of their study is to establish the source (s) of the voluminous Cenozoic section in this region, reaching several kilometres in thickness and important as a petroleum system. These authors conclude that Oligocene sandstones of La Laja Formation were mostly sourced from eclogite- to greenschist-facies metasedimentary, metaigneous, and ultramafic rocks of the Guatemala suture complex. Minor contributions from the Chiapas Massif Complex, exposed directly to the south ~60 km of the Cerro Pelón area, were also suggested by the authors. They thus conclude that the Palaeogene stratigraphic record in southeastern Mexico was mostly controlled by the development of the Caribbean–North America plate boundary rather than by orogenic processes at the Pacific margin of North America. Presently, we do not agree with the conclusions of Ortega Flores and colleagues who studied the Cerro Pelón section, thus some discussion is required. Serpentinite bearing Nanchital Conglomerate is well exposed in the Cerro Pelón area, and high- to low-grade metamorphic rocks experienced an uplift in the vicinity of the Cerro Pelón area at the time of deposition of the La Laja Formation. We believe the data are better explained by multiple local sources in southern and eastern Oaxaca as well as sources to the south and southwest, which include the Cenozoic coastal batholith, the Grenvillean/Guichicovi basement complexes, the Chiapas Massif, the Mazatlán schist and other units in the Cuicateco Belt, as well as the Mesozoic cover of these areas (Todos Santos Formation, Cretaceous carbonate rocks, and Paleogene strata such as the Soyaló and Bosque Formations).  相似文献   
69.
This paper presents the results of a detailed structural analysis of the northern Nijar and southern Vera basins with special emphasis on the evolution of the regional stress field and the associated timing of movement of the Serrata, Gafarillos and Palomares strike-slip fault zones. These major fault zones control the Neogene deformation of the SE Internal Betic Cordilleras in Spain. Detailed stress analysis on Neogene sediments of the Vera and Nijar basins shows a strike-slip regime with NW–SE-oriented subhorizontal maximum principal stress (σ1) during Tortonian and earliest Messinian times. Under the influence of this stress field, dextral displacement along the N090E-trending Gafarillos fault zone resulted in deformation of the sediments of the southern Sorbas and northeastern Nijar basins. During the early Messinian a clock-wise rotation of the stress field occurred. Stress analysis in rocks with late–early Messinian up to Quaternary ages in the Nijar and Vera basins indicates a strike-slip regime with N–S-oriented subhorizontal maximum principal stress (σ1). Under the influence of this stress field the main activity along the N010E-striking Palomares strike-slip fault zone took place, resulting in deformation of the Neogene sediments of the southeastern Vera basin and culminating in a maximum sinistral displacement of more than 20 km. At the same time the stress field was not suitably oriented to exert a large shear component on the Gafarillos fault zone, which activity ended after the earliest Messinian. Fault and outcrop patterns of syntectonic Neogene sediments in the Vera basin show that displacement along the Palomares fault zone decreased at the end of the Middle Miocene although minor displacement phases may still have occurred during the Late Miocene and possibly even Pliocene. From the Middle Miocene onward, deformation in the Nijar basin was controlled by sinistral displacement along the N040E-trending Serrata strike-slip fault zone.  相似文献   
70.
The three intracratonic sedimentary basins located in central Baltoscandinavia, namely the Bothnian Gulf basin, the Bothnian Sea basin and the Baltic basin, developed in response to Middle Proterozoic and Late Proterozoic tectonic events, separated in time by about 800 Ma. Only the Baltic basin was subsequently affected by Caledonian orogenesis and Mesozoic rifting. Crustal extension was minor or did not take place during the Proterozoic basin evolution phases. However, according to the Moho topography, crustal thinning did take place. This was probably a result of subcrustal magmatism. On a craton-wide scale, the ages of granitoids, which intruded during the Middle Proterozoic basin formation, generally decrease from east to west. This fact, combined with the evidence provided by mantle-derived flood basalt magmatism, points to a moving asthenospheric diapir as the cause for basin development. Asthenospheric upwelling was probably also responsible for the second, Late Proterozoic, basin evolution phase, as evidenced by the lack of crustal thinning and extension, and the occurrence of tholeiitic intrusions. In addition, a Late Proterozoic thermally induced palaeo-high, located at about the position of the intracratonic basins, is compatible with indications from glaciations. As the ages of Late Proterozoic intracratonic basins also decrease from east to west across the craton, the location of asthenospheric diapirism during this time interval was also moving. For the Fennoscandian lithosphere, the presence of fundamental lithospheric weakness zones (e.g. terrane boundaries) might be an explanation for the formation of two generations of basins originating from asthenospheric upwelling at about the same location in the Fennoscandian Shield. The spacing and size of the Proterozoic intracratonic basins suggest that the asthenospheric diapirism was not deep seated. Therefore, sublithospheric convective processes might be the cause for the asthenospheric upwellings. Such processes are related to Rayleigh–Taylor instabilities in the sublithospheric mantle. Emplacement of an asthenospheric diapir causes a thermal bulge at the surface of the lithosphere. Modelling results demonstrate that erosion of the surficial high, succeeded by cooling of the lithosphere, can explain the accumulation of early Palaeozoic sediments in the Bothnian Sea basin, taking into account post-Ordovician vertical and lateral erosion of the basin fill.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号