首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   128篇
  国内免费   63篇
测绘学   34篇
大气科学   120篇
地球物理   348篇
地质学   116篇
海洋学   1篇
天文学   2篇
综合类   22篇
自然地理   222篇
  2024年   5篇
  2023年   7篇
  2022年   16篇
  2021年   60篇
  2020年   54篇
  2019年   40篇
  2018年   31篇
  2017年   36篇
  2016年   30篇
  2015年   31篇
  2014年   56篇
  2013年   90篇
  2012年   50篇
  2011年   48篇
  2010年   32篇
  2009年   26篇
  2008年   35篇
  2007年   30篇
  2006年   20篇
  2005年   29篇
  2004年   25篇
  2003年   14篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
排序方式: 共有865条查询结果,搜索用时 0 毫秒
71.
72.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
73.
Evapotranspiration (ET) is one of the major processes in the hydrological cycle, and its reliable estimation is essential to water resources management. Numerous equations have been developed for estimating ET, most of which are complex and require numerous items of weather data. In many areas, the necessary data are lacking, and simpler techniques are required. Evaporation pans are used throughout the world because of the simplicity of technique, low cost, and ease of application. In this study, the radial basis function (RBF) network is applied for pan evaporation to evapotranspiration conversions. The adaptive pan‐based RBF network was trained using daily Policoro data from 15 May 1981 to 23 December 1983. The RBF network obtained, Christiansen, FAO‐24 pan, and FAO‐56 Penman–Monteith equations were verified in comparison with lysimeter measurements of grass evapotranspiration using daily Policoro data from 25 February to 18 December 1984. Based on summary statistics, the RBF network ranked first with the lowest RMSE value (0·433 mm day?1). The RBF network obtained on the basis of the daily data from Policoro, Italy and pan‐based equations were further tested using mean monthly data collected in Novi Sad, Serbia, and Kimberly, Idaho, USA. The overall results favoured use of the RBF network for pan evaporation to evapotranspiration conversions. The use of the RBF network is very simple and does not require any knowledge of ANNs. Users require only code (RBF network), Epan data and corresponding Ra data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
74.
75.
采用1961—2014年逐月全球标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)数据集、ORA-S4海温资料及NCEP/NCAR再分析资料,对华南地区秋季干旱的年代际转折及其与热带印度洋热含量的关系进行了研究。结果表明:华南秋季SPEI主要表现为全区一致变化型,且具有明显的年代际变化特征,在1988年发生了年代际转折,转折后(前)为偏旱(涝)期。进一步分析表明,华南秋季SPEI与同期热带西印度洋海洋热含量变化呈显著的正相关关系,即当秋季热带西印度洋热含量偏低时,华南地区SPEI偏小,易发生干旱。热带西印度洋热含量异常影响华南秋季干旱的可能机制为:秋季热带印度洋热含量变化表现为""型的东西向偶极子分布,即当热带西印度洋热含量偏低时,热带东印度洋热含量将会偏高;而热带东印度洋热含量偏高将会使热带东印度洋—西太平洋海表温度偏高、外逸长波辐射偏小、降水增多,凝结潜热释放增强,产生偏强的东亚Hadley环流,使华南地区存在异常下沉运动,不利于产生降水;热带东印度洋—西太平洋海表温度偏高,还会使西北太平洋副热带高压位置偏西、面积偏大,西北太平洋存在气旋性环流异常,使华南地区受偏北气流异常控制,从而削弱了向华南地区的水汽输送。热带东印度洋—西太平洋海表温度年代际变化是热带西印度洋热含量异常影响华南秋旱年代际变化的重要环节,因此用NCAR CAM5.1全球大气环流模式进行了热带东印度洋—西太平洋海表温度年代际变化的敏感性试验,证实该区海表温度年代际升高对华南秋季年代际干旱具有重要作用。  相似文献   
76.
This paper examines a model for estimating canopy resistance rc and reference evapotranspiration ETo on an hourly basis. The experimental data refer to grass at two sites in Spain with semiarid and windy conditions in a typical Mediterranean climate. Measured hourly ETo values were obtained over grass during a 4 year period between 1997 and 2000 using a weighing lysimeter (Zaragoza, northeastern Spain) and an eddy covariance system (Córdoba, southern Spain). The present model is based on the Penman–Monteith (PM) approach, but incorporates a variable canopy resistance rc as an empirical function of the square root of a climatic resistance r* that depends on climatic variables. Values for the variable rc were also computed according to two other approaches: with the rc variable as a straight‐line function of r* (Katerji and Perrier, 1983, Agronomie 3 (6): 513–521) and as a mechanistic function of weather variables as proposed by Todorovic (1999, Journal of Irrigation and Drainage Engineering, ASCE 125 (5): 235–245). In the proposed model, the results show that rc/ra (where ra is the aerodynamic resistance) presents a dependence on the square root of r*/ra, as the best approach with empirically derived global parameters. When estimating hourly ETo values, we compared the performance of the PM equation using those estimated variable rc values with the PM equation as proposed by the Food and Agriculture Organization, with a constant rc = 70 s m?1. The results confirmed the relative robustness of the PM method with constant rc, but also revealed a tendency to underestimate the measured values when ETo is high. Under the semiarid conditions of the two experimental sites, slightly better estimates of ETo were obtained when an estimated variable rc was used. Although the improvement was limited, the best estimates were provided by the Todorovic and the proposed methods. The proposed approach for rc as a function of the square root of r* may be considered as an alternative for modelling rc, since the results suggest that the global coefficients of this locally calibrated relationship might be generalized to other climatic regions. It may also be useful to incorporate the effects of variable canopy resistances into other climatic and hydrological models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
77.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
78.
Evapotranspiration was studied at a salt marsh site in the Hunter River estuary, NSW, Australia, during 1996–8. Estimates of actual evapotranspiration (Ea) were obtained for three sites using the eddy correlation method. These values were compared with results obtained with the Penman and Penman–Monteith equations, and with pan evaporation. The Penman–Monteith method was found to be most reliable in estimating daily and hourly evapotranspiration. Surface resistance values averaging 12 s m?1 were derived from the eddy correlation estimates. Recent tidal flooding and rainfall were found to decrease surface resistance and increase Ea/Ep ratios. Estimates of evapotranspiration obtained using the Penman–Monteith method were shown to be sensitive to changes in surface resistance, canopy height and the method used to estimate net radiation from incoming solar radiation. These results underline the importance of accurately estimating such parameters based on site‐specific data rather than relying on empirical equations, which are derived primarily for crops and forests. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
79.
《大气与海洋》2012,50(4):279-294
ABSTRACT

The authors propose a modified complementary method to estimate regional evapotranspiration (ET) under different climatic and physical conditions using only meteorological data. The purpose of this study is to investigate the applicability of the modified complementary method for estimating global ET distribution and corresponding water balance. Gridded data from the Climate Research Unit, University of East Anglia, with 30 min spatial resolution and monthly time steps are used. Using the Thornthwaite water budget, monthly maps of global water surplus (precipitation minus ET) are produced. The results show good agreement with many previous studies. The average annual precipitation, ET, and water surplus are 690, 434, and 256?mm, respectively. The results show that the modified model can predict regional ET using meteorological data and can be used to assess global water resources. Consequently, the proposed method has strong potential for projecting water resource balance under future climate change.  相似文献   
80.
Reference evapotranspiration (ETo) is a key component in efficient water management, especially in arid and semi-arid environments. However, accurate ETo assessment at the regional scale is complicated by the limited number of weather stations and the strict requirements in terms of their location and surrounding physical conditions for the collection of valid weather data. In an attempt to overcome this limitation, new approaches based on the use of remote sensing techniques and weather forecast tools have been proposed.Use of the Land Surface Analysis Satellite Application Facility (LSA SAF) tool and Geographic Information Systems (GIS) have allowed the design and development of innovative approaches for ETo assessment, which are especially useful for areas lacking available weather data from weather stations. Thus, by identifying the best-performing interpolation approaches (such as the Thin Plate Splines, TPS) and by developing new approaches (such as the use of data from the most similar weather station, TS, or spatially distributed correction factors, CITS), errors as low as 1.1% were achieved for ETo assessment. Spatial and temporal analyses reveal that the generated errors were smaller during spring and summer as well as in homogenous topographic areas.The proposed approaches not only enabled accurate calculations of seasonal and daily ETo values, but also contributed to the development of a useful methodology for evaluating the optimum number of weather stations to be integrated into a weather station network and the appropriateness of their locations. In addition to ETo, other variables included in weather forecast datasets (such as temperature or rainfall) could be evaluated using the same innovative methodology proposed in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号