首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1133篇
  免费   107篇
  国内免费   153篇
测绘学   21篇
大气科学   2篇
地球物理   135篇
地质学   210篇
海洋学   837篇
天文学   6篇
综合类   76篇
自然地理   106篇
  2024年   3篇
  2023年   10篇
  2022年   20篇
  2021年   18篇
  2020年   45篇
  2019年   39篇
  2018年   24篇
  2017年   27篇
  2016年   40篇
  2015年   24篇
  2014年   46篇
  2013年   57篇
  2012年   45篇
  2011年   70篇
  2010年   78篇
  2009年   93篇
  2008年   101篇
  2007年   85篇
  2006年   84篇
  2005年   72篇
  2004年   63篇
  2003年   54篇
  2002年   48篇
  2001年   23篇
  2000年   34篇
  1999年   26篇
  1998年   21篇
  1997年   16篇
  1996年   17篇
  1995年   13篇
  1994年   19篇
  1993年   22篇
  1992年   14篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
排序方式: 共有1393条查询结果,搜索用时 46 毫秒
121.
Sea-level rise is likely to cause significant changes in the morphodynamic state of beaches in the higher latitudes, resulting in steeper beaches with larger particle sizes. These physical changes have implications for beach invertebrate communities, which are determined largely by sediment particle size, and hence for ecosystem function. Previous studies have explored the relationships between invertebrate communities and environmental variables such as particle size, beach slope and exposure to wave action, and often these physical variables can be integrated in various indices of morphodynamic state. Most of these studies incorporated a full range of beach types that included wave-dominated surf beaches, where the wave action is harsh enough to enable reliable estimates of breaker height, a parameter included in several of the indices, and concluded that more dissipative beaches with gentler slopes and finer particle sizes often support a higher number of species and greater abundance than more reflective beaches. Whether these predictions remain valid for less wave-dominated beaches, where breaker height is more difficult to determine, is uncertain. In the present study, the abundance of meio- and macrofauna was quantified across a range of beaches in the UK, which are generally towards the lower energy end of the morphodynamic gradient, and their relationships with beach physical properties explored. No significant relationships were found between abundance and the standard morphodynamic indices, but significant relationships were found for both macro- and meiofaunal abundance when these indices were combined with an exposure index (derived from velocity, direction, duration and the effective fetch). All the relationships identified between abundance and combined morphodynamic indices indicated a higher abundance of both macro- and meiofauna on the more dissipative beaches. The reverse was however found for species richness. If predictions that accelerated sea-level rise will move beaches towards a more reflective morphodynamic state are correct, this could lead to declines in the abundance of meio- and macrofauna, with potential adverse consequences for ecosystem functioning.  相似文献   
122.
Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (?50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m−3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.  相似文献   
123.
Zooplankton assemblages were studied from January 2007 to January 2008 along the salinity gradient of the Charente estuary (France). A Lagrangian survey was performed monthly at five sampling stations defined by salinity (freshwater, 0.5, 5, 15 and 25) in order to collect zooplankton and measure the main environmental parameters (concentrations of suspended particulate matter, particulate organic carbon, chlorophyll a and phaeopigments). A combination of multivariate cluster analysis, species indicator index and canonical correspondence analysis was used to relate the spatio-temporal patterns of the zooplankton assemblages with environmental drivers. The estuary was divided into three different zones by means of environmental parameters while four zooplankton assemblages were identified along the salinity gradient. The Charente estuary appeared as one of the most turbid systems in Europe, with suspended particulate matter (SPM) concentration reaching 3.5 g l−1 in the Maximum Turbidity Zone (MTZ). Algal heterotrophy and microphytobenthos resuspension from the wide mudflats could be responsible for the relatively high chlorophyll a concentrations measured within this MTZ. Salinity and SPM affected significantly the spatial distribution of zooplankton species while temperature and river flow seemed to control their temporal variations. From a zooplanktonic viewpoint, the highly turbid Charente estuary seemed to match an “ecotone–ecocline” model: the succession of species assemblages along the salinity gradient matched the concept of ecocline while the MTZ, which is a stressful narrow area, could be considered as an ecotone. Although such ecoclinal characteristics seemed to be a general feature of estuarine biocenoses, the ecotone could be more system-specific and biological compartment-specific.  相似文献   
124.
Over this one-year study, the variations of inorganic As species were examined monthly along the salinity gradient of the Penzé estuary (NW France) in relation with different biogeochemical parameters. In most cases, dissolved As exhibited a non-conservative behaviour which resulted from the competition between two major processes. In the upstream section of the estuary, a strong input of both total inorganic As and As(III) occurred. Then, the removal of the same species, under precipitation of iron oxides/oxyhydroxides, was observed in the low-salinity range (S < 10). Using our experimental data, the fluxes of the various As species were estimated for the first time in estuarine waters. Inputs from the river were mainly constituted of particulate As (∼70%). Conversely, dissolved species were predominant in the net fluxes (∼65%) and As(III) accounted for ∼15% of the dissolved net flux.  相似文献   
125.
Water column concentrations and benthic fluxes of dissolved inorganic nitrogen (DIN) and oxygen (DO) were measured in the Gulf of St. Lawrence and the Upper and Lower St. Lawrence Estuary (USLE and LSLE, respectively) to assess the nitrogen (N) budget in the St. Lawrence (SL) system, as well as to elucidate the impact of bottom water hypoxia on fixed-N removal in the LSLE. A severe nitrate deficit, with respect to ambient phosphate concentrations (N*∼−10 μmol L−1), was observed within and in the vicinity of the hypoxic bottom water of the LSLE. Given that DO concentrations in the water column have remained above 50 μmol L−1, nitrate reduction in suboxic sediments, rather than in the water column, is most likely responsible for the removal of fixed N from the SL system. Net nitrate fluxes into the sediments, derived from pore water nitrate concentration gradients, ranged from 190 μmol m−2 d−1 in the hypoxic western LSLE to 100 μmol m−2 d−1 in the Gulf. The average total benthic nitrate reduction rate for the Laurentian Channel (LC) is on the order of 690 μmol m−2 d−1, with coupled nitrification-nitrate reduction accounting for more than 70%. Using average nitrate reduction rates derived from the observed water column nitrate deficit, the annual fixed-N elimination within the three main channels of the Gulf of St. Lawrence and LSLE was estimated at 411 × 106 t N, yielding an almost balanced N budget for the SL marine system.  相似文献   
126.
Remote sensing of chlorophyll concentration is potentially affected by the presence of inorganic matter in the water column. Seasonal variability of total suspended particulate matter (SPM) concentration and its partition into organic and inorganic fractions was thus measured in the estuary and Gulf of St. Lawrence during five cruises. These measures were made in the surface layer down to the depth of the 0.1% light level. Results indicate that vertical variability was small for the entire study area. Data analysis lead to the definition of two main regions having different SPM characteristics: 1) the estuary zone characterized by a strong spatial variability, intermediate SPM concentrations and a clear spring phytoplankton bloom that is combined to an increased inorganic matter load; 2) the gulf region characterized by a relatively low SPM concentration and phytoplankton blooms in the spring and fall periods. Combined with in situ measurements of remote sensing reflectances, the database was used to validate existing inorganic matter retrieval algorithms and develop a new one better adapted to the low concentrations encountered in the St. Lawrence estuary and Gulf.  相似文献   
127.
Temporarily open/closed estuaries typically open to the sea due to freshwater inflow coupled with storm surge events. In September 2008, in the absence of freshwater inflow, the mouth of the East Kleinemonde Estuary breached in response to a storm surge. The mouth of the estuary closed the following day at a high level. Marine overwash events following the breach introduced large volumes of saline water into the estuary and raised the water level by 0.07–0.33 m. Salinity was significantly higher in the 15 month closed phase after the breach (31 ± 0.9) compared to 21.9 ± 0.9 in the closed brackish phase before the breach. The historical average salinity for the estuary during a closed period is 23–25. The increase in salinity has reduced submerged macrophytes Ruppia cirrhosa and Chara vulgaris cover by 38.1%. Macroalgal cover of species such as Dictyota dichotoma, Caulacanthus ustulatus, Codium tenue and Ulva spp. have increased by 7.9%. The saline high water levels have also significantly reduced supratidal salt marsh cover by 15.2%, and reed and sedge cover by 19.7%. Loss of these habitats may result in bank destabilisation and erosion. This is the first record of an extended saline period in the 15 years the estuary has been monitored. Sea level rise in association with climate change, together with localised freshwater inflow reduction is likely to result in an increase in marine overwash events. The frequency and duration of closed saline periods are likely to increase in this type of estuary. A loss of submerged macrophytes may have significant impacts on faunal composition and abundance and on the subsequent functioning of temporarily open/closed estuaries. This has serious ecological implications since these estuaries represent 70% of the different types of estuaries found in South Africa.  相似文献   
128.
Sediment processes in estuaries are controlled by the interaction of factors that include tides, fresh water inputs, bed morphology, sediment supply, and hydrodynamics. The interaction of these factors strongly influences the pattern of sediment deposition. The ability to quantify sediment deposition on a regional scale will improve the understanding of the underlying processes, and provide valuable information for managing estuarine systems. This paper describes our approach for obtaining the deposition pattern and quantifying the amount of 20th century impacted sediments in the Haverstraw Bay section of the Hudson River Estuary. Through the combination of high-resolution seismic data and rapidly acquired geochemical information from numerous sediment cores, we estimate that our study site experiences an average sediment accumulation rate of ∼3 mm/y and that ∼75,000 t/y or ∼10% of the annual total sediment input measured at the Poughkeepsie, NY gauging station (USGS) is stored in this reach of the Hudson River on ∼100 y timescales. A detailed analysis of the depositional pattern indicates that the accumulation rate varies considerably throughout the study area ranging from non-depositional to >8 mm/y. Our data also clearly indicate that the dredged channel in Haverstraw Bay is currently the main focus of deposition in this area.  相似文献   
129.
The bathymetric LiDAR system is an airborne laser that detects sea bottom at high vertical and horizontal resolutions in shallow coastal waters. This study assesses the capabilities of the airborne bathymetric LiDAR sensor (Hawk Eye system) for coastal habitat mapping in the Oka estuary (within the Biosphere Reserve of Urdaibai, SE Bay of Biscay, northern Spain), where water conditions are moderately turbid. Three specific objectives were addressed: 1) to assess the data quality of the Hawk Eye LiDAR, both for terrestrial and subtidal zones, in terms of height measurement density, coverage, and vertical accuracy; 2) to compare bathymetric LiDAR with a ship-borne multibeam echosounder (MBES) for different bottom types and depth ranges; and 3) to test the discrimination potential of LiDAR height and reflectance information, together with multi-spectral imagery (three visible and near infrared bands), for the classification of 22 salt marsh and rocky shore habitats, covering supralittoral, intertidal and subtidal zones. The bathymetric LiDAR Hawk Eye data enabled the generation of a digital elevation model (DEM) of the Oka estuary, at 2 m of horizontal spatial resolution in the terrestrial zone (with a vertical accuracy of 0.15 m) and at 4 m within the subtidal, extending a water depth of 21 m. Data gaps occurred in 14.4% of the area surveyed with the LiDAR (13.69 km2). Comparison of the LiDAR system and the MBES showed no significant mean difference in depth. However, the Root Mean Square error of the former was high (0.84 m), especially concentrated upon rocky (0.55–1.77 m) rather than in sediment bottoms (0.38–0.62 m). The potential of LiDAR topographic variables and reflectance alone for discriminating 15 intertidal and submerged habitats was low (with overall classification accuracy between 52.4 and 65.4%). In particular, reflectance retrieved for this case study has been found to be not particularly useful for classification purposes. The combination of the LiDAR-based DEM and derived topographical features with the near infrared and visible bands has permitted the mapping of 22 supralittoral, intertidal and subtidal habitats of the Oka estuary, with high overall classification accuracies of between 84.5% and 92.1%, using the maximum likelihood algorithm. The airborne bathymetric Hawk Eye LiDAR, although somewhat limited by water turbidity and wave breaking, provides unique height information obscured from topographic LiDAR and acoustic systems, together with an improvement of the habitat mapping reliability in the complex and dynamic coastal fringe.  相似文献   
130.
对2006年2,5,8,11月份长江口海域表层水体中的悬浮颗粒物(SPM)进行稳定氮同位素分析,根据不同季节、不同区域内其1δ5N值的变化研究水体中氮的迁移、转化等生物地球化学过程,揭示其环境行为,从而对该海域的氮循环机制进行探索。研究发现:该海域悬浮颗粒有机物的稳定氮同位素组成(1δ5Np)分布范围较宽,在0.6‰~8.2‰之间,具有明显的时空分布特点,反映了不同程度的陆源输入和氮的生物地球化学过程的影响。口门内,表层水体中1δ5Np的变化主要受长江径流的陆源输入影响,生物地球化学作用影响较弱;最大浑浊带,水体中的悬浮颗粒有机氮受微生物的降解活动影响明显,各季节均存在不同程度的颗粒物分解作用;外海区,陆源输入减弱,悬浮颗粒物的δ15Np值主要受微藻的同化吸收作用以及一定程度的颗粒物分解作用影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号