首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24593篇
  免费   5233篇
  国内免费   6162篇
测绘学   1498篇
大气科学   2291篇
地球物理   6132篇
地质学   16292篇
海洋学   3055篇
天文学   343篇
综合类   1963篇
自然地理   4414篇
  2024年   90篇
  2023年   285篇
  2022年   810篇
  2021年   971篇
  2020年   913篇
  2019年   1211篇
  2018年   1000篇
  2017年   1079篇
  2016年   1141篇
  2015年   1238篇
  2014年   1450篇
  2013年   1361篇
  2012年   1626篇
  2011年   1555篇
  2010年   1374篇
  2009年   1740篇
  2008年   1514篇
  2007年   1739篇
  2006年   1796篇
  2005年   1560篇
  2004年   1497篇
  2003年   1382篇
  2002年   1216篇
  2001年   1026篇
  2000年   931篇
  1999年   805篇
  1998年   709篇
  1997年   641篇
  1996年   600篇
  1995年   540篇
  1994年   481篇
  1993年   412篇
  1992年   356篇
  1991年   232篇
  1990年   152篇
  1989年   205篇
  1988年   107篇
  1987年   83篇
  1986年   38篇
  1985年   28篇
  1984年   15篇
  1983年   11篇
  1982年   4篇
  1980年   3篇
  1979年   28篇
  1978年   6篇
  1977年   4篇
  1954年   14篇
  1877年   2篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 504 毫秒
911.
A three‐dimensional constitutive model for joints is described that incorporates nonlinear elasticity based on volumetric elastic strain, and plasticity for both compaction and shear with emphasis on compaction. The formulation is general in the sense that alternative specific functional forms and evolution equations can be easily incorporated. A corresponding numerical structure based on finite elements is provided so that a joint width can vary from a fraction of an element size to a width that occupies several elements. The latter case is particularly appropriate for modeling a fault, which is considered simply to be a joint with large width. For small joint widths, the requisite equilibrium and kinematic requirements within an element are satisfied numerically. The result is that if the constitutive equation for either the joint or the rock is changed, the numerical framework remains unchanged. A unique aspect of the general formulation is the capability to handle either pre‐existing gaps or the formation of gaps. Representative stress–strain plots are given to illustrate both the features of the model and the effects of changes in values of material parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
912.
913.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
914.
915.
Las Vegas Valley has had a long history of groundwater development and subsequent surface deformation. InSAR interferograms have revealed detailed and complex spatial patterns of subsidence in the Las Vegas Valley area that do not coincide with major pumping regions. This research represents the first effort to use high spatial and temporal resolution subsidence observations from InSAR and hydraulic head data to inversely calibrate transmissivities (T), elastic and inelastic skeletal storage coefficients (Ske and Skv) of the developed‐zone aquifer and conductance (CR) of the basin‐fill faults for the entire Las Vegas basin. The results indicate that the subsidence observations from InSAR are extremely beneficial for accurately quantifying hydraulic parameters, and the model calibration results are far more accurate than when using only groundwater levels as observations, and just a limited number of subsidence observations. The discrepancy between distributions of pumping and greatest levels of subsidence is found to be attributed to spatial variations in clay thickness. The Eglington fault separates thicker interbeds to the northwest from thinner interbeds to the southeast and the fault may act as a groundwater‐flow barrier and/or subsidence boundary, although the influence of the groundwater barrier to this area is found to be insignificant. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
916.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
917.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
918.
This paper describes how measurements of the movement of identifiable features at the edge of a turbulent plume can be interpreted to determine the properties of the mean flow and consequently, using plume theory, can be used to make estimates of the fluxes of volume (mass), momentum, and buoyancy in a plume. This means that video recordings of smoke rising from a chimney or buoyant material from a source on the sea bed can be used to make accurate estimates of the source conditions for the plume. At best we can estimate the volume flux and buoyancy flux to within about 5% and 15% of the actual values, respectively. Although this is restricted to the case of a plume rising in a stationary and unstratified environment, we show that the results may be of practical use in other more complex situations. In addition, we demonstrate that large-scale (turbulent) coherent structures at the plume edge form on a scale approximately 40% of the local (mean) plume half-width and travel at almost 60% of the average local (mean) velocity in the plume.  相似文献   
919.
We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk plasticity near the fault. The technique is more robust than the standard split‐node method because it can accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution reproduces the standard split‐node solution, but with the added advantage that it can also accommodate randomly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials, including the Mohr–Coulomb, Drucker–Prager, modified Cam‐Clay, and a conical plasticity model with a compression cap, to capture off‐fault bulk plasticity. More specifically, the cap model adds robustness to the framework because it can accommodate various modes of deformation, including compaction, dilatation, and shearing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
920.
"信息化质检平台IGCES"及"地理国情普查成果质检软件"是某省地理国情普查采用的主要人机交互质量控制软件。该类软件使用复杂,某些检查项耗时长,难以满足快速化质检的要求,本文结合地理国情普查具体实施要求,提出"人工详查、基于ArcGIS 10.1平台与质检软件概查"的快速质检方法,为国家战略规划制定、空间规划管理、区域政策制定、灾害预警、科学研究等领域的地理国情监测提供有力的数据保障。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号