首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24593篇
  免费   5233篇
  国内免费   6162篇
测绘学   1498篇
大气科学   2291篇
地球物理   6132篇
地质学   16292篇
海洋学   3055篇
天文学   343篇
综合类   1963篇
自然地理   4414篇
  2024年   90篇
  2023年   285篇
  2022年   810篇
  2021年   971篇
  2020年   913篇
  2019年   1211篇
  2018年   1000篇
  2017年   1079篇
  2016年   1141篇
  2015年   1238篇
  2014年   1450篇
  2013年   1361篇
  2012年   1626篇
  2011年   1555篇
  2010年   1374篇
  2009年   1740篇
  2008年   1514篇
  2007年   1739篇
  2006年   1796篇
  2005年   1560篇
  2004年   1497篇
  2003年   1382篇
  2002年   1216篇
  2001年   1026篇
  2000年   931篇
  1999年   805篇
  1998年   709篇
  1997年   641篇
  1996年   600篇
  1995年   540篇
  1994年   481篇
  1993年   412篇
  1992年   356篇
  1991年   232篇
  1990年   152篇
  1989年   205篇
  1988年   107篇
  1987年   83篇
  1986年   38篇
  1985年   28篇
  1984年   15篇
  1983年   11篇
  1982年   4篇
  1980年   3篇
  1979年   28篇
  1978年   6篇
  1977年   4篇
  1954年   14篇
  1877年   2篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 894 毫秒
781.
Lijiang-Daju fault, the seismogenic fault of the 1996 Lijiang M=7.0 earthquake, can be divided into Lijiang-Yuhu segment in the south and Yuhu-Daju segment in the north. The two segments show clear difference in geological tectonics, but have the similar dynamic features. Both normal dip-slip and sinistral strike-slip coexist on the fault plane. This kind of movement started at the beginning of the Quaternary (2.4~2.5 Ma B.P.). As to the tectonic types, the detachment fault with low angle was developed in the Early Pleistocene and the normal fault with high angle only after the Mid-Pleistocene (0.8 Ma B.P.). Based on the horizontal displacements of gullies and the vertical variance of planation surfaces cross the Lijiang-Daju fault at east piedmont of Yulong-Haba range, the average horizontal and vertical slip rates are calculated. They are 0.84 mm/a and 0.70 mm/a since the Quaternary and 1.56 mm/a and 1.69 mm/a since the Mid-Pleistocene. The movements of the nearly N-S-trending Lijiang-Daju fault are controlled not only by the regional stress field, but also by the variant movement between the Yulong-Haba range and Lijiang basin. The two kinds of dynamic processes form the characteristics of seismotectonic environment of occurring the 1996 Lijiang earthquake.  相似文献   
782.
The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed. Foundation item: National important fundamental research “The Basic Research of Important Project in Damage Environment” and The important project “The Seismic Hazard Assessment Research and Anti-earthquake Structure Research” from China Earthquake Administration during the 10th Five-year Plan. Contribution No. 04FE1008, Institute of Geophysics, China Earthquake Administration.  相似文献   
783.
The deep seismic reflection data on profile HY2 are reprocessed by the method of simultaneous inversion of velocity distribution and interface position. By the travel-time inversion with the data of the diving wave Pg and fault plane reflection wave, we determine the geometric form and velocity of Haiyuan fault zone interior and surrounding rock down to 10 km depth. The measured data show that the amplitudes have strong attenuation in the range of stake number 37–39 km, suggesting the fault zone has considerable width in the crustal interior. The results of this paper indicate that to the north of the fault zone the crystalline basement interface upheaves gradually from southwest to northeast and becomes shallow gradually towards northeast, and that to the south of the fault zone, within the basin between Xihua and Nanhua mountains, the folded basement becomes shallow gradually towards southwest. The obliquity of the fault zone is about 70° above the 3 km depth, about 60° in the range of the 3–10 km depths. From the results of this paper and other various citations, we believe that Haiyuan fault zone is in steep state from the Earth’s surface to the depth of 10 km. Foundation item: Joint Seismological Science Foundation of China (201001) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200308, Exploration Geophysical Center, China Earthquake Administration.  相似文献   
784.
The west Kunlun fold-thrust belt (WKFTB) and the Altun fold-thrust belt (AFTB) are respectively located in the southern margin of the Tarim basin, NW China. The analyses of typical structures and regional dynamics of the fold-thrust belts reveal their different structural and petroleum features and mechanisms. WKFTB differs from AFTB by abundant fault-related folds and triangles zones, and was formed by northward extrusion of the west Kunlun orogen. AFTB was affected synchronously by northward extrusion of the Altun orogen and the sinistral strike-slipping of the Altun Fault, so it is characterized by the minor scale and the monotonous structural styles. The Aqike anticline and the Aqike fault, of which the strikes are orthogonal to the strike of the fold-thrust belts, are regarded as the adjustive structures between both of the fold-thrust belts. The oil-gas pools of WKFTB develop mainly in the faulted-related anticline traps, but the oil-gas pools of AFTB develop mainly in the low fault-block and anticlines traps related with the paleo-uplifts. There are different exploration countermeasures for both of the fold-thrust belts.  相似文献   
785.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   
786.
We present multichannel seismic reflection data collected over the Atlantis megamullion, at the eastern ridge-transform intersection of Atlantis fracture zone on the northern Mid-Atlantic Ridge, and over its conjugate crust. These data image for the first time the internal structure of a young, well-developed megamullion dome formed by tectonic extension across a long-lived oceanic detachment fault. The exposed, corrugated detachment-fault surface exhibits a sharp, coherent reflection that contrasts with less organized reflectivity of surrounding basaltic seafloor. At the termination of the megamullion the fault is imaged ∼13 km along-strike beneath a volcanic hanging-wall block at a sub-seafloor depth of 0.2-0.5 s two-way travel time, reaching north as far as 30°19′N. The eastward dipping of the fault beneath the hanging-wall block is estimated to be ∼6-14°. The corrugated fault surface is underlain by a continuous, strong, and relatively smooth reflection (D) at 0.2-0.25 s sub-bottom below the central axis of the dome. This reflection deepens up to 0.6 s sub-bottom beneath the western slope and it appears to intersect the seafloor on the eastern slope. We suggest that Atlantis massif formed by sequential slip on two different detachment faults that merged at depth, with breakaways as little as ∼2 km apart. The initial detachment is represented by reflection D, and the second corresponds to the presently exposed fault surface. In this interpretation, much of the sliver between the faults is interpreted to be strongly serpentinized peridotite with reduced seismic velocity; it lies in contact with less altered, higher-velocity mantle below the first detachment, resulting in the strong, smooth character of reflection D. Mantle rocks exposed in the megamullion indicate that the feature formed during a period of extreme tectonic extension and probably limited magmatism. In conjugate crust corresponding to termination of the megamullion, observed sub-bottom reflections are interpreted as base of seismic layer 2A. This layer is as thick as or thicker (∼570-900 m) than layer 2A in normal Atlantic crust, and it suggests that relatively normal crustal accretion occurred by the time the megamullion stopped forming.  相似文献   
787.
Molecular dynamics (MD) modeling of the 10-Å phase, Mg3Si4O10(OH)2·xH2O, with x=2/3, 1.0 and 2.0 shows complex structural changes with pressure, temperature and water content and provides new insight into the structures and stabilization of these phases under subduction zone conditions. The structure(s) of this phase and its role as a reservoir of water in the mantle have been controversial, and these calculations provide specific predictions that can be tested by in situ diffraction studies. At ambient conditions, the computed structures of talc (x=0) and the 10-Å phases with x=2/3 and 1.0 are stable over the 350-ps period of the MD simulations. Under these conditions, the 10-Å phases show phlogopite-like layer stacking in good agreement with previously published structures based on powder X-ray diffraction data for samples quenched from high-pressure and high-temperature experiments. The calculations show that the 10-Å phase with x=2.0 is unstable at ambient conditions. The computed structures at P=5.5 GPa and T=750 K, well within the known stability field of the 10-Å phase, change significantly with water content, reflecting changing H-bonding configurations. For x=2/3, the layer stacking is talc-like, and for x=1.0, it is phlogopite-like. The calculations show that transformation between these two stackings occurs readily, and that the talc-like stacking for the x=2/3 composition is unlikely to be quenchable to ambient conditions. For x=2.0, the layer stacking at P=5.5 GPa and T=750 K is different than any previously proposed structure for a 10-Å phase. In this structure, the neighboring basal oxygens of adjacent magnesium silicate layers are displaced by b/3 (about 3 Å) resulting in the Si atoms of one siloxane sheet being located above the center of the six-member ring across the interlayer. The water molecules are located 1.2 Å above the center of all six-member rings and accept H-bonds from the OH groups located below the rings. The b/3-displaced structure does not readily transform to either the talc-like or phlogopite-like structure, because neither of these stackings can accommodate two water molecules per formula unit. There is likely to be a compositional discontinuity and phase transition between the b/3-displaced phase and the phase with phlogopite-like stacking. The simulations reported here are the first to use the recently developed CLAYFF force field to calculate mineral structures at elevated pressures and temperatures.  相似文献   
788.
Introduction Sichuan-Yunnan region is a major area with frequent strong earthquakes in Chinese mainland, especially the middle-southern segment of South-North Seismic Zone, where many strong earth-quakes occurred in history. In the past 30 years, Sichuan-Yunnan region has two seismically active periods: one is from Tonghai earthquake in 1970 to Longling-Songpan earthquake in 1976, the other is from Lancang earthquake in 1988 to now. During this two periods, the M=7.7 Tonghai, M=7.1 Dagua…  相似文献   
789.
Since the 1980s, one of the important progresses in the study of the Qinling orogenic belt is marked by findings of numerous ophiolite zones[1—4]. On the basis of the former orogenic models of the Paleozoic colli-sional orogeny[1,5,6] and the Mesozoic collision[7—9], another orogenic evolution model from the Paleozoic subduction-collision along the Shangdan suture to the Mesozoic final collision orogeny along the Mianle suture[3,10], including the relicts of the Jining orogeny, has been pr…  相似文献   
790.
Rapakivi granite is a very rare and special type of rocks in the crust. Nearly all the typical Proterozoic rapakivi occurred in stable craton, and was regarded as representing special anorogenic settings and rifting events of the supercontinents. Therefore, rapakivi has constantly been attracting the attention of researchers from various countries[15]. For example, the Protero- zoic rapakivi granites occurring in Miyun, Beijing, has been studied in detail by the researchers both at home and …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号