首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8184篇
  免费   1594篇
  国内免费   1736篇
测绘学   956篇
大气科学   2083篇
地球物理   2095篇
地质学   2193篇
海洋学   1398篇
天文学   137篇
综合类   937篇
自然地理   1715篇
  2024年   48篇
  2023年   117篇
  2022年   293篇
  2021年   336篇
  2020年   373篇
  2019年   473篇
  2018年   368篇
  2017年   416篇
  2016年   397篇
  2015年   487篇
  2014年   528篇
  2013年   568篇
  2012年   558篇
  2011年   519篇
  2010年   378篇
  2009年   461篇
  2008年   460篇
  2007年   560篇
  2006年   544篇
  2005年   465篇
  2004年   418篇
  2003年   348篇
  2002年   285篇
  2001年   274篇
  2000年   242篇
  1999年   215篇
  1998年   225篇
  1997年   205篇
  1996年   167篇
  1995年   133篇
  1994年   145篇
  1993年   113篇
  1992年   98篇
  1991年   69篇
  1990年   49篇
  1989年   48篇
  1988年   34篇
  1987年   29篇
  1986年   22篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
271.
According to calculation results of ocean chlorophyll concentration based on SeaWiFS data by SeaBAM model and synchronous ship-measured data, this research set up an improved model for CaseⅠand CaseⅡwater bodies respectively. The monthly chlorophyll distribution in the East China Sea in 1998 was obtained from this improved model on calculation results of SeaBAM. The euphotic depth distribution in 1998 in the East China Sea is calculated by using remote sensing data of K490 from SeaWiFS according to the relation between the euphotic depth and the oceanic diffuse attenuation coefficient. With data of ocean chlorophyll concentration, euphotic depth, ocean surface photosynthetic available radiation (PAR), daily photoperiod and optimal rate of daily carbon fixation within a water column, the monthly and annual primary productivity spatio-temporal distributions in the East China Sea in 1998 were obtained based on VGPM model. Based on analysis of those distributions, the conclusion can be drawn that there is a clear bimodality character of primary productivity in the monthly distribution in the East China Sea. In detail, the monthly distribution of primary productivity stays the lowest level in winter and rises rapidly to the peak in spring. It gets down a little in summer, and gets up a little in autumn. The daily average of primary productivity in the whole East China Sea is 560.03 mg/m2/d, which is far higher than the average of subtropical ocean areas. The annual average of primary productivity is 236.95 g/m2/a. The research on the seasonal variety mechanism of primary productivity shows that several factors that affect the spatio-temporal distribution may include the chlorophyll concentration distribution, temperature condition, the Yangtze River diluted water variety, the euphotic depth, ocean current variety, etc. But the main influencing factors may be different in each local sea area.  相似文献   
272.
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   
273.
274.
275.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   
276.
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.  相似文献   
277.
1. Introduction It is well-known that the state of ocean plays very important role in the climate change. But there is a paucity of the ocean observation data. The data distri- bution in the space, time and different components is very inhomogeneous, even in some areas, there are no any observation data. Hence, it brings some diffcul- ties to the scientists to study many problems relevant to ocean. This situation has been being changed since ARGO (Array for Real-time Geostrophic Oceanogra-…  相似文献   
278.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products.  相似文献   
279.
Total electron content (TEC) and foF2 ionosonde data obtained at Tucumán (26.9°S; 65.4°W) from April 1982 to March 1983 (high solar activity period) are analyzed to show the seasonal variation of TEC, NmF2 (proportional to square of foF2) and the equivalent slab thickness EST. Bimonthly averages of the monthly median for January–February, April–May, July–August and October–November have been considered to represent summer, autumn, winter and spring seasons, respectively. The results show that the higher values of TEC and maximum electron density of F2-layer NmF2 are observed during the equinoxes (semiannual anomaly). During daytime, both in TEC and in NmF2 the seasonal or winter anomaly can be seen. At nighttime, this effect is not observed. Also, the observed NmF2 values are used to check the validity of International Reference Ionosphere (IRI) to predict the seasonal variability of this parameter. In general, it is found that averaged monthly medians (obtained with the IRI model) overestimate averaged monthly median data for some hours of the day and underestimate for the other hours.  相似文献   
280.
Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ∼ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction (α) below that of optimal packing (∼ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional contacts are only re-established in the final stages of emplacement and stop the flow motion. We infer that fines-rich (i.e. matrix-supported) pyroclastic flows propagate as inviscid fluid gravity currents for most of their emplacement, and this is consistent with some field data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号