首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6495篇
  免费   1050篇
  国内免费   1061篇
测绘学   82篇
大气科学   119篇
地球物理   2216篇
地质学   2443篇
海洋学   2357篇
天文学   191篇
综合类   241篇
自然地理   957篇
  2024年   30篇
  2023年   74篇
  2022年   142篇
  2021年   230篇
  2020年   285篇
  2019年   333篇
  2018年   283篇
  2017年   268篇
  2016年   267篇
  2015年   292篇
  2014年   353篇
  2013年   488篇
  2012年   309篇
  2011年   368篇
  2010年   325篇
  2009年   391篇
  2008年   469篇
  2007年   426篇
  2006年   440篇
  2005年   309篇
  2004年   317篇
  2003年   305篇
  2002年   234篇
  2001年   216篇
  2000年   191篇
  1999年   194篇
  1998年   159篇
  1997年   148篇
  1996年   117篇
  1995年   88篇
  1994年   87篇
  1993年   82篇
  1992年   79篇
  1991年   53篇
  1990年   58篇
  1989年   37篇
  1988年   23篇
  1987年   22篇
  1986年   14篇
  1985年   26篇
  1984年   20篇
  1983年   20篇
  1982年   14篇
  1981年   11篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有8606条查询结果,搜索用时 788 毫秒
241.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
242.
This paper presents a novel triple‐layer model, called VART DO‐3L, for simulation of spatial variations in dissolved oxygen (DO) in fine‐grained streams, characterized by a fluid mud (fluff or flocculent) layer (an advection‐dominated storage zone) as the interface between overlying stream water and relatively consolidated streambed sediment (a diffusion‐dominated storage zone). A global sensitivity analysis is conducted to investigate the sensitivity of VART DO‐3L model input parameters. Results of the sensitivity analysis indicate that the most sensitive parameter is the relative size of the advection‐dominated storage zones (As/A), followed by a lumped reaction term (R) for the flocculent layer, biological reaction rate (μo) in diffusive layer and biochemical oxygen demand concentration (L) in water column. In order to address uncertainty in model input parameters, Monte Carlo simulations are performed to sample parameter values and to produce various parameter combinations or cases. The VART DO‐3L model is applied to the Lower Amite River in Louisiana, USA, to simulate vertical and longitudinal variations in DO under the cases. In terms of longitudinal variation, the DO level decreases from 7.9 mg l at the Denham Springs station to about 2.89 mg l?1 at the Port Vincent station. In terms of vertical variation, the DO level drops rapidly from the overlying water column to the advection‐dominated storage zone and further to the diffusive layer. The DO level (CF) in the advective layer (flocculent layer) can reach as high as 40% of DO concentration (C) in the water column. The VART DO‐3L model may be applied to similar rivers for simulation of spatial variations in DO level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
243.
244.
Particles eroded from hillslopes and exported to rivers are recognized to be composite particles of high internal complexity. Their architecture and composition are known to influence their transport behaviour within the water column relative to discrete particles. To‐date, hillslope erosion studies consider aggregates to be stable once they are detached from the soil matrix. However, lowland rivers and estuaries studies often suggest that particle structure and dynamics are controlled by flocculation within the water column. In order to improve the understanding of particle dynamics along the continuum from hillslopes to the lowland river environment, soil particle behaviour was tested under controlled laboratory conditions. Seven flume erosion and deposition experiments, designed to simulate a natural erosive event, and five shear cell experiments were performed using three contrasting materials: two of them were poorly developed and as such can not be considered as soils, whilst the third one was a calcareous brown soil. These experiments revealed that soil aggregates were prone to disaggregation within the water column and that flocculation may affect their size distribution during transport. Large differences in effective particle size were found between soil types during the rising limb of the bed shear stress sequence. Indeed, at the maximum applied bed shear stress, the aggregated particles median diameter was found to be three times larger for the well‐developed soil than for the two others. Differences were smaller in the falling limb, suggesting that soil aggregates underwent structural changes. However, characterization of particles strength parameters showed that these changes did not fully turn soil aggregates into flocs, but rather into hybrid soil aggregate–floc particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
245.
Many of the commonly used analytical techniques for assessing the properties of fluvial suspended particulate matter (SPM) are neither cost effective nor time efficient, making them prohibitive to long‐term high‐resolution monitoring. We present an in‐depth methodology utilizing two types of spectroscopy which, when combined with automatic water samplers, can generate accurate, high‐temporal resolution SPM geochemistry data, inexpensively and semi‐destructively, directly from sediment covered filter papers. A combined X‐ray fluorescence spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy approach is developed to estimate concentrations for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds (organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within SPM trapped on quartz fibre filters at masses as low as 3 mg. Calibration models with small prediction errors are derived, along with mass correction factor models to account for variations in retained SPM mass. Spectral pre‐processing methods are shown to enhance the reproducibility of results for some compounds, and the importance of filter paper selection and homogeneous sample preparation in minimizing spectral interference is emphasized. The geochemical signal from sediment covered filter papers is demonstrated to be time stable enabling samples to be stored for several weeks prior to analysis. Example results obtained during a heavy precipitation event in October 2012 demonstrate the methodology presented here has considerable potential to be utilized for high‐resolution monitoring of SPM geochemistry under a range of in‐stream hydrological conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
246.
In order to understand the differences in the suspended sediment and total dissolved solid (TDS) yield patterns between the glacial and non‐glacial catchments at the headwaters of Urumqi River, northwestern China, water samples were collected from a glacier catchment and an empty cirque catchment within the region, during three melting seasons from 2006 to 2008. These samples were analyzed to estimate suspended sediment and TDS concentrations, fluxes and erosion rates in the two adjoining catchments. There were remarked differences in suspended sediment and TDS yield patterns between the two catchments. Suspended sediment concentrations were controlled mainly by the sediment source, whereas TDS concentrations were primarily related to the hydrologic interaction with soil minerals. Generally, the glacial catchment had much higher suspended sediment and TDS yields, together with higher denudation rates, than the non‐glacial catchment. Overall, glacial catchment was mainly dominated by physical denudation process, whereas the non‐glacial catchment was jointly influenced by physical and chemical denudation processes. The observed differences in material delivery patterns were mainly controlled by the runoff source and the glacial processes. The melting periods of glacier and snow were typically the most important time for the suspended sediment and TDS yields. Meanwhile, episodic precipitation events could generate disproportionately large yields. Subglacial hydrology dynamics, glaciers pluck and grind processes could affect erodibility, and the large quantities of dust stored on the glacier surface provided additional sources for suspended sediment transport in the glacial catchment. These mechanisms imply that, in response to climate change, the catchment behaviour will be modified significantly in this region, in terms of material flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
247.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
248.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
249.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
250.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号