首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1681篇
  免费   479篇
  国内免费   177篇
测绘学   50篇
大气科学   120篇
地球物理   1088篇
地质学   576篇
海洋学   160篇
天文学   2篇
综合类   59篇
自然地理   282篇
  2024年   9篇
  2023年   17篇
  2022年   31篇
  2021年   108篇
  2020年   142篇
  2019年   97篇
  2018年   114篇
  2017年   118篇
  2016年   106篇
  2015年   118篇
  2014年   142篇
  2013年   273篇
  2012年   94篇
  2011年   94篇
  2010年   84篇
  2009年   86篇
  2008年   87篇
  2007年   72篇
  2006年   85篇
  2005年   66篇
  2004年   72篇
  2003年   44篇
  2002年   53篇
  2001年   51篇
  2000年   23篇
  1999年   32篇
  1998年   27篇
  1997年   31篇
  1996年   17篇
  1995年   11篇
  1994年   5篇
  1993年   11篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
排序方式: 共有2337条查询结果,搜索用时 15 毫秒
31.
三峡工程大江截流的水文技术   总被引:2,自引:0,他引:2  
鉴于三峡工程大江截流水深大,流量大,工期紧,特别是截流过程中要考虑不断航因素,因此,在大江截流和二期围堰阶段的施工进程中,应充分考虑到各方面的因素,尽可能采取一切减少大江截流和二期围堰施工难度的手段和措施,其中水文测验,水文气象预报,河道观测,水文分析与计算和水力学计算等水文工作则是为顺利实施高质量大江截流的重要条件。  相似文献   
32.
Soil pipes are common and important features of many catchments, particularly in semi‐arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also signi?cantly in?uence catchment sediment and solute yield. However, there are often problems in ?nding and de?ning soil pipe networks which are located deep below the surface. Ground‐penetrating radar (GPR) has been used for non‐destructive identi?cation and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed signi?cant changes in re?ectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post‐processing, when background levels were increased by more than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post‐processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of ?owpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
33.
This paper introduces and evaluates a novel method for ascertaining the grain‐size distribution of subsurface sediments that involves profoundly less sampling effort than standard methods. It is based on hybrid sampling principles previously applied to the construction of synthetic surface grain‐size distributions. The method is developed from an empirical demonstration of the approximate similarity of surface and subsurface grain‐size distributions when compared over a common range of sizes. Subsurface hybrid models are found to provide good facsimiles of grain‐size distributions de?ned using standard criteria and to yield distribution percentiles with millimetre accuracy. The technique is presented as an expedient alternative to standard methods for large, perennial gravel‐bed rivers. As this is a new technique, prudent application is advised in lieu of further investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
34.
面向流域水资源管理,提出了一个基于GIS/RS的流域分布式水文模型,模型主要包括单元水文模型与河网汇流模型两大部分。单元水文模型涉及到冠层截留、融雪、蒸散发、坡面流、非饱和土壤水运动和地下水出流等水文物理过程。产流计算考虑到地形坡度的影响采用基于地形指数的计算方法。汇流演算基于河网结构采用分段马斯京根方法。模型的大部分参数与输入信息可以利用GIS和RS技术获取,能够对气候变化和人类活动对下垫面的改变,做出快速的模拟与响应。  相似文献   
35.
阐述了我国水文水资源研究的发展阶段,面临的主要问题,以及当前研究中的热点问题。以新疆地区为例,对干旱区内陆河流域的水文水资源研究方向作了初步探讨。  相似文献   
36.
After dividing the source regions of the Yellow River into 38 sub-basins, the paper made use of the SWAT model to simulate streamflow with validation and calibration of the observed yearly and monthly runoff data from the Tangnag hydrological station, and simulation results are satisfactory. Five land-cover scenario models and 24 sets of temperature and precipitation combinations were established to simulate annual runoff and runoff depth under different scenarios. The simulation shows that with the increasing of vegetation coverage annual runoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2oC and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largest situation among all scenarios.  相似文献   
37.
38.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
39.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
40.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号