首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1878篇
  免费   396篇
  国内免费   124篇
测绘学   25篇
大气科学   100篇
地球物理   1083篇
地质学   653篇
海洋学   75篇
天文学   2篇
综合类   38篇
自然地理   422篇
  2024年   9篇
  2023年   11篇
  2022年   41篇
  2021年   82篇
  2020年   85篇
  2019年   63篇
  2018年   77篇
  2017年   124篇
  2016年   98篇
  2015年   90篇
  2014年   115篇
  2013年   213篇
  2012年   107篇
  2011年   120篇
  2010年   97篇
  2009年   93篇
  2008年   112篇
  2007年   132篇
  2006年   107篇
  2005年   79篇
  2004年   69篇
  2003年   69篇
  2002年   68篇
  2001年   59篇
  2000年   42篇
  1999年   39篇
  1998年   27篇
  1997年   40篇
  1996年   28篇
  1995年   18篇
  1994年   17篇
  1993年   11篇
  1992年   8篇
  1991年   7篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有2398条查询结果,搜索用时 12 毫秒
141.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
142.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
143.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
144.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
145.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   
146.
Monthly runoff from the 34.3% glacierized tropical catchment of Llanganuco in the tropical Cordillera Blanca, Perú, is successfully simulated and compared with a measured 44 year time series. In the investigation area, the climate is characterized by all-year round homogenous temperature conditions and a strong variability in air humidity and moisture content of the atmosphere. Thus, contrary to the mid latitudes, the seasonal variation in glacier melt strongly depends on moisture-related variables, rather than on air temperature. The here presented ITGG-2.0-R model aims for these requirements. The lack of moisture-related input data other than precipitation demands for an intermediate calibration step. Net shortwave radiation, the emissivity of the atmosphere and a sublimation/melt ratio are related to precipitation amounts. Runoff is well simulated and correlates with the measured record with r2 = 0.76. Seasonally obtained r2 are only slightly smaller. On a long-term, the cumulative deviation is minor, and the mean annual cycle of runoff is reproduced rather well (r2 = 0.99). Based on four different IPCC climate change scenarios, future runoff is simulated. All runoff scenarios are modelled for the respective steady-state glacier extent. This leads to a reduction in the glacier size and a decreased amount of glacier melt. On the other hand, direct runoff increases due to larger glacier free areas. Consequently, mean annual runoff remains almost unchanged, but the seasonality intensifies considerably with more runoff during the wet and less runoff during the dry season.  相似文献   
147.
There is a dearth of knowledge on the runoff processes of eucalypt woodland communities in the semi-arid tropics of Australia. The work was undertaken on a 100 m transect of a 0·8 degree hillslope typical of the ‘smooth plainlands’ of central-north Queensland. This paper introduces a new experimental design for measuring overland flow in such areas by way of a cascade system of unbounded runoff plots which allow the inputs and outputs between troughs to be calculated. Most storms generate overland flow. Time to overland flow ranges between 1 and 18 min where rain intensities are above 10mm hr−1 and when the average detention storage of 3·6 mm is exceeded. The bare soil surfaces within the scattered grass understory control the runoff generation process through the temporal variability of field saturated hydraulic conductivity. The study demonstrated that overland flow is mainly redistributed over the freely-draining oxic soil. Some areas export more overland flow than they gain from upslope (runoff), others gain more overland flow than they export (runon). Over the study period only 2 per cent of total rain is transferred out of this 100 m transect as overland flow due to the short duration of storms, the relatively high soil permeability, and the low slope angle. The remainder adds to the large soil water store or deep drainage. The variability of runoff–runon over these ‘smooth plainlands’ highlights how results from bounded plots would be misleading in such areas.  相似文献   
148.
In this study a simple modelling approach was applied to identify the need for spatial complexity in representing hydrological processes and their variability over different scales. A data set of 18 basins was used, ranging between 8 and 4011 km2 in area, located in the Nahe basin (Germany), with daily discharge values for over 30 years. Two different parsimoniously structured models were applied in lumped as well as in spatially distributed according to two distribution classifications: (1) a simple classification based on the lithology expressed in three permeability types and (2) a more complex classification based on seven dominating runoff production processes. The objective of the study was to compare the performances of the models on a local and on a regional scale as well as between the models with a view to identifying the accuracy in capturing the spatial variability of the rainfall‐runoff relationships. It was shown that the presence of a specific basin characteristic or process of the distribution classification was not related with higher model performance; only a larger basin size promoted higher model performance. The results of this study also indicated that the permeability generally contained more useful information on the spatial heterogeneity of the hydrological behaviour of the natural system than did a more detailed classification on dominating runoff generation processes. Although model performance was slightly lower for the model that used permeability as a distribution classification, consistency in its parameter values was found, which was lacking with the more complex distribution classification. The latter distribution classification had a higher flexibility to optimize towards the variability of the runoff, which resulted in higher performance, however, process representation was applied inconsistently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
149.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
150.
Soil erosion by water is the root cause of ecological degradation in the Shiwalik foothills of Northern India. Simulation of runoff and its component processes is a pre‐requisite to develop the management strategies to tackle the problem, successfully. A two‐dimensional physically based distributed numerical model, ROMO2D has been developed to simulate runoff from small agricultural watersheds on an event basis. The model employs the 2‐D Richards equation with sink term to simulate infiltration and soil moisture dynamics in the vadoze zone under variable rainfall conditions, and 2‐D Saint‐Venant equations under the kinematic wave approximation along with Manning's equation as the stage‐discharge equation for runoff routing. The various flow‐governing equations have been solved numerically by employing a Galerkin finite element method for spatial discretization using quadrilateral elements and finite difference techniques for temporal solutions. The ROMO2D computer program has been developed as a class‐based program, coded in C + + in such a way that with minor modifications, the model can be used to simulate runoff on a continuous basis. The model writes output for a runoff hydrograph of each storm. Model development is described in this paper and the results of model testing and field application are to be presented in a subsequent paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号