首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28213篇
  免费   6456篇
  国内免费   5636篇
测绘学   2215篇
大气科学   2964篇
地球物理   16039篇
地质学   12150篇
海洋学   2555篇
天文学   287篇
综合类   2256篇
自然地理   1839篇
  2024年   88篇
  2023年   319篇
  2022年   750篇
  2021年   1101篇
  2020年   1067篇
  2019年   1359篇
  2018年   1116篇
  2017年   1214篇
  2016年   1151篇
  2015年   1420篇
  2014年   1773篇
  2013年   1665篇
  2012年   1778篇
  2011年   1891篇
  2010年   1703篇
  2009年   2001篇
  2008年   1715篇
  2007年   1957篇
  2006年   1909篇
  2005年   1728篇
  2004年   1583篇
  2003年   1411篇
  2002年   1133篇
  2001年   1020篇
  2000年   984篇
  1999年   913篇
  1998年   886篇
  1997年   788篇
  1996年   756篇
  1995年   690篇
  1994年   618篇
  1993年   454篇
  1992年   390篇
  1991年   251篇
  1990年   184篇
  1989年   185篇
  1988年   128篇
  1987年   67篇
  1986年   43篇
  1985年   22篇
  1984年   21篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   23篇
  1978年   4篇
  1977年   6篇
  1972年   1篇
  1954年   19篇
排序方式: 共有10000条查询结果,搜索用时 750 毫秒
311.
The major continental blocks in northeastern Asia are the North China block and the South China block, which have collided starting from the Korean peninsula. Geologic and geophysical interpretations reveal a well defined suture zone in northeastern China from Qinling through Dabie to Jiaodong. The discovery of high-pressure metamorphic rocks in the Hongseong area of the Korean peninsula, prominent evidence for the collision zone, indicates extension of the collision zone in northeastern China into the Korean peninsula. Interpretation of the GRACE satellite gravity dataset shows two prominent structural boundaries in the Yellow Sea. One extends from the Jiaodong Belt in eastern China to the Imjingang Belt in the Korean peninsula. The other extends from near Nanjing, eastern China, to Hongseong. Tectonic movement in or near the suture zone may be responsible for seismic activity in the western Korean peninsula and the development of the Yellow Sea sedimentary basin.  相似文献   
312.
A new method to determine semi-analytical solutions of one-dimensional contaminant transport problem with nonlinear sorption is described. This method is based on operator splitting approach where the convective transport is solved exactly and the diffusive transport by finite volume method. The exact solutions for all sorption isotherms of Freundlich and Langmuir type are presented for the case of piecewise constant initial profile and zero diffusion. Very precise numerical results for transport with small diffusion can be obtained even for larger time steps (e.g., when the Courant-Friedrichs-Lewy (CFL) condition failed).  相似文献   
313.
Nitrogen cycle is an important bio-geochemical process in the environment. Measurement of the total nitrogen (TN) is a routine experiment in agriculture, biology and environmental sciences. The Kjeldahl method (KM) and elemental analyzer method (EA) are both commonly used to determine TN. Total nitrogen by EA is the sum of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia. Total nitrogen by KM (TKN) is made up of both organic nitrogen and ammonia. A comparative study focused on the two methods is conducted by analysis of TN in 97 samples from the sediment sequence of Gouchi, a salt lake in North China. KM presents a higher degree of accuracy than EA with a standard deviation of 0.007 vs. 0.024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. Therefore, for samples from lake sediment sequences or soils in North China, KM is inapplicable to determining TN because of usually high contents of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In Lake Gouchi, the contents of nitrate and nitrite nitrogen vary from 1.40% in the lower part of the sequence to 14.77% in the uppermost part, suggesting a gradual evolution process from a fresh water lake to the present-day salt lake.  相似文献   
314.
LI Hong-jun  CHI Shi-chun  LIN Gao 《岩土力学》2006,27(Z1):1063-1068
A simplified procedure for evaluating aseismic stability of slope subjected to earthquake shaking, in which the effect of dynamic shear strength and time-history stress on the yielding angular acceleration of sliding block is taken into account, is presented. The fundamental feature of this procedure is the dynamic shear strength. The numerical computations are performed by using the proposed method. It is shown that the computed sliding displacement for a given core dam, with either method of dynamic shear strength properly considered, is more rational compared with the conventional computational results based on static shear strength.  相似文献   
315.
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined.  相似文献   
316.
Analyzing the tables and probability maps posted by Yan Y. Kagan and David D. Jackson in April 2002–September 2004 at http://scec.ess.ucla.edu/~ykagan/predictions_index.html and the catalog of earthquakes for the same period, the conclusion is drawn that the underlying method could be used for prediction of aftershocks, while it does not outscore random guessing when main shocks are considered.  相似文献   
317.
We performed a series of laboratory experiments in which elastic waves were transmitted across a simulated fault. Two types of experiments were carried out: (1) Normal Stress Holding Test (NSHT): normal stress was kept constant for about 3 h without shear stress and transmission waves were observed. (2) Shear Stress Increasing Test (SSIT): shear stress was gradually increased until a stick-slip event occurred. Transmission waves were continuously observed throughout the process of stress accumulation. We focused on the change in transmission waves during the application of shear stress and especially during precursory slips.It was found in NSHT that the amplitude of transmission waves linearly increased with the logarithm of stationary contact time. The increase amounted to a few percent after about 3 h. Creep at asperity contacts is responsible for this phenomenon. From a theoretical consideration, it was concluded that the real contact area increased with the logarithm of stationary contact time.We observed in SSIT a significant increase in wave amplitude with shear stress application. This phenomenon cannot be attributed to the time effect observed in NSHT. Instead, it can be explained by the mechanism of “junction growth” proposed by Tabor. Junction growth yields an increase in real contact area. It is required for junction growth to occur that the material in contact is already plastic under a purely normal loading condition. A computer simulation confirmed that this requirement was satisfied in our experiments. We also found that the rate at which the amplitude increased was slightly reduced prior to a stick-slip event. The onset time of the reduction well coincides with the onset of precursory slip. The cause of the reduction is attributed to the reset of stationary contact time due to displacement. This interpretation is supported by the result of NSHT. Taking the time of stationary contact in SSIT into account, we may expect the change in wave amplitude to be, at most, only a few percent. The observed slight reduction in increasing rate is, in this sense, reasonable. The static stiffness of the fault also decreases with precursory slip. It was also found that low frequency waves are a better indicator of precursory slip than high frequency waves. This might suggest that low frequency waves with longer wavelength are a better indicator of average behavior of faults. The problem, however, merits a further investigation. The shifts in phase were also found to be a good indicator of the change in contact state of the fault. The changes in both amplitude and phase of transmission waves are unifyingly understood through the theory of transmission coefficient presented by Pyrak-Nolte et al. Rough surfaces have a tendency to give larger stick-slips than smooth surfaces. The amount of precursory slip is larger for rough surfaces than for smooth surfaces. Although it was confirmed by a computer simulation that rough surfaces have larger contact diameters than smooth surfaces, the rigorous relationship between the surface roughness (contact diameter) and the amount of precursory slips was not established.  相似文献   
318.
Non-volcanic deep low-frequency tremors in southwest Japan exhibit a strong temporal and spatial correlation with slow slip detected by the dense seismic network. The tremor signal is characterized by a low-frequency vibration with a predominant frequency of 0.5–5 Hz without distinct P- or S-wave onset. The tremors are located using the coherent pattern of envelopes over many stations, and are estimated to occur near the transition zone on the plate boundary on the forearc side along the strike of the descending Philippine Sea plate. The belt-like distribution of tremors consists of many clusters. In western Shikoku, the major tremor activity has a recurrence interval of approximately six months, with each episode lasting over a week. The tremor source area migrates during each episode along the strike of the subducting plate with a migration velocity of about 10 km/day. Slow slip events occur contemporaneously with this tremor activity, with a coincident estimated source area that also migrates during each episode. The coupling of tremor and slow slip in western Shikoku is very similar to the episodic tremor and slip phenomenon reported for the Cascadia margin in northwest North America. The duration and recurrence interval of these episodes varies between tremor clusters even on the same subduction zone, attributable to regional difference in the frictional properties of the plate interface.  相似文献   
319.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   
320.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号