首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3698篇
  免费   323篇
  国内免费   168篇
测绘学   139篇
大气科学   211篇
地球物理   1618篇
地质学   1159篇
海洋学   431篇
天文学   29篇
综合类   27篇
自然地理   575篇
  2024年   21篇
  2023年   30篇
  2022年   37篇
  2021年   85篇
  2020年   169篇
  2019年   130篇
  2018年   126篇
  2017年   176篇
  2016年   166篇
  2015年   128篇
  2014年   152篇
  2013年   373篇
  2012年   84篇
  2011年   113篇
  2010年   112篇
  2009年   165篇
  2008年   238篇
  2007年   209篇
  2006年   209篇
  2005年   187篇
  2004年   152篇
  2003年   125篇
  2002年   100篇
  2001年   89篇
  2000年   109篇
  1999年   105篇
  1998年   99篇
  1997年   94篇
  1996年   71篇
  1995年   67篇
  1994年   54篇
  1993年   55篇
  1992年   33篇
  1991年   26篇
  1990年   22篇
  1989年   22篇
  1988年   21篇
  1987年   8篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4189条查询结果,搜索用时 15 毫秒
991.
Quantifying the timescales associated with moving freshwater–seawater interfaces is critical for effective management of coastal groundwater resources. In this study, timescales of interface movement in response to both inland and coastal water level variations are investigated. We first assume that seawater intrusion (SWI) and retreat (SWR) are driven by an instantaneous freshwater-level variation at the inland boundary. Numerical modelling results reveal that logarithmic timescales of SWI (lnTi) and SWR (lnTr) can be described respectively by various simple linear equations. For example, SWI timescales are described by lnTi = a + blnhf–s, where a and b are linear regression coefficients and hf–s is the boundary head difference after an instantaneous drop of inland freshwater head. For SWR cases with the same initial conditions, but with different increases in freshwater head, lnTr = c + dΔXT, where c and d are regression coefficients and ΔXT is the distance of toe response that can be estimated by a steady-state, sharp-interface analytical solution. For SWR cases with the same freshwater head increase, but with different initial conditions, in contrast, lnTr = e + flnΔXT, where e and f are regression coefficients. The timescale of toe response caused by an instantaneous variation of sea level is almost equivalent to that induced by an instantaneous inland head variation with the same magnitude of water level change, but opposite in direction. Accordingly, the empirical equations of this study are also applicable for sea-level variations in head-controlled systems or for simultaneous variations of both inland and coastal water levels. Despite the idealised conceptual models adopted in this study, the results imply that for a particular coastal aquifer, SWI timescales are controlled by the boundary water levels after variations, whereas SWR timescales are dominated by the distance of toe response.  相似文献   
992.
Abstract

Abstract The exploitation of an alluvial aquifer (2 × 106 m3) has been developed since 1998 in the Valley of Forquilha (Quixeramobim, State of Ceará). For this purpose, 165 wells were drilled along the 23 km of the valley that supplies 500 families and their farms. Monthly monitoring of piezometric and electrical conductivity (2000–2003) show seasonal variations in the water volume (35%) and in the mean value of the conductivity (800–1200 µS cm-1). A conceptual hydrogeological model was developed. Analysis of the data and simulations highlight that the recharge of the aquifer is mainly due to infiltration from the river in the rainy season, which is of the order of 1% of the rain over the catchment area (195 km2). The abstractions increase the recharge between 30 and 60%. The model makes it possible to propose scenarios of sustainable exploitation of the water resource in the catchment. For the period between 1970 and 1988, other simulations show that it would have been possible to maintain irrigated cultures on 75 ha for 80% of the time. During the remaining 20%, the water level is too low, and farmers would have to reduce the irrigated area.  相似文献   
993.
《水文科学杂志》2013,58(1):179-191
Abstract

Skill measures based on 2 × 2 contingency tables were adopted for the quantitative internal verification of snow cover simulations with the distributed hydrological model PREVAH, which provided a high resolution simulation of the hydrological cycle for Switzerland for the 1981–2000 period. Simulated snow cover has been compared to data monitored at 103 stations. The skill measures provide valuable quantitative indications on the correspondence of the modelled and observed values. The analysis with objective scores reveals better model estimates of snow cover presence and distribution in locations above 1000 m a.s.l., relative to lower areas. For explicit spatial verification, 20 NOAA-AVHRR snow cover scenes were compared to the model results. The spatial and temporal differences in the agreement between observed and simulated snow cover patterns were assessed. PREVAH provides reliable snow cover simulations. The results also reveal that scores from 2 × 2 contingency tables provide objective methodological support in the quantitative estimation of the agreement between observed and simulated spatial patterns.  相似文献   
994.
ABSTRACT

During the last few decades, hydrological models have become very powerful, capable of spatially analysing the hydrological information and accurately representing the geomorphological characteristics of the studied area. However, one of the drawbacks of this heightened intricacy is the amount of time required to set up a hydrological model. In this study, a simple methodology that requires only a minimum set-up time is presented. This methodology employs linear regression to combine the outputs of simple hydrological models to simulate hydrological responses. Two kinds of simple hydrological models are employed. The first one represents the characteristics of the streamflow attributed to overland flow, and the second the characteristics of the streamflow attributed to interflow and baseflow. The methodology was tested in 4 case studies, and the results were encouraging. The best performance was achieved in the case study with data of fine time step with significant length.  相似文献   
995.
One of the major challenges encountered in earthquake geotechnical physical modelling is to determine the effects induced by the artificial boundaries of the soil container on the dynamic response of the soil deposit. Over the past years, the use of absorbing material for minimising boundaries effects has become an increasing alternative solution, yet little systematic research has been carried out to quantify the dynamic performance of the absorbing material and the amount of energy dissipated by it. This paper aims to examine the effects induced by the absorbing material on the dynamic response of the soil, and estimate the amount of energy reduced by the absorbing boundaries. The absorbent material consisted of panels made of commercially available foams, which were placed on both inner sides of end-walls of the soil container. These walls are perpendicular to the shaking direction. Three types of foam with different mechanical properties were used in this study. The results were obtained from tests carried out using a shaking table and Redhill 110 sand for the soil deposit. It was found that a considerably amount of energy was dissipated, in particular within the frequency range close to the resonance of the soil deposit. This feature suggests that the presence of foams provides a significant influence to the dynamic response of the soil. The energy absorbed by the boundaries was also quantified from integrals of the Power Spectral Density of the accelerations. It was found that the absorbed energy ranged between a minimum of 41% to a maximum of 92% of the input levels, depending mainly on the foam used in the test. The effects provided by the acceleration levels and depth at which the energy was evaluated were practically negligible. Finally, practical guidelines for the selection of the absorbing material are provided.  相似文献   
996.
The presence of vegetation modifies flow and sediment transport in alluvial channels and hence the morphological evolution of river systems. Plants increase the local roughness, modify flow patterns and provide additional drag, decreasing the bed‐shear stress and enhancing local sediment deposition. For this, it is important to take into account the presence of vegetation in morphodynamic modelling. Models describing the effects of vegetation on water flow and sediment transport already exist, but comparative analyses and validations on extensive datasets are still lacking. In order to provide practical information for modelling purposes, we analysed the performance of a large number of models on flow resistance, vegetation drag, vertical velocity profiles and bed‐shear stresses in vegetated channels. Their assessments and applicability ranges are derived by comparing their predictions with measured values from a large dataset for different types of submerged and emergent vegetation gathered from the literature. The work includes assessing the performance of the sediment transport capacity formulae of Engelund and Hansen and van Rijn in the case of vegetated beds, as well as the value of the drag coefficient to be used for different types of vegetation and hydraulic conditions. The results provide a unique comparative overview of existing models for the assessment of the effects of vegetation on morphodynamics, highlighting their performances and applicability ranges. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
997.
The main aim of this paper is to present the pitfalls connected with the construction of reliable chronologies for anthropogenically disturbed peatlands over the last two millennia based on 210Pb and 14C dating, i.e. the period of the strongest human impact on these ecosystems. The following hypotheses have been formulated: i) parts of peatlands suspected to be affected by peat extraction may possess traces of mechanical disturbances undetectable using different analyses based on biota proxy; ii) failure to consider information included in radionuclide date inversions may contribute to the establishment of misleading chronologies. To test these hypotheses, different scenarios of chronology based on high resolution 210Pb and 14C dating from a peat core retrieved from the Puścizna Krauszowska bog (southern Poland) have been analysed. Nowadays, this mire is intensively exploited by humans; however, it contains remains of dome considered undisturbed, from which the core presented in this paper was collected. The set of dates revealed the presence of marked 14C date inversions (mechanical disturbances) which, if inappropriately interpreted before the age–depth modelling process, may lead to the establishment of misleading chronologies, and thus an incorrect interpretation of biota proxy records, e.g. pollen. Those sections of peat profiles with prominent age inversions and/or strong discrepancies between the peat accumulation rate and bulk density should be rejected from age–depth modelling, even if interpretable chronologies can be obtained.  相似文献   
998.
The identification of sediment sources is fundamental to the management of increasingly scarce water resources. Tracing the origin of sediment with elemental geochemistry is a well‐established approach to determining sediment provenance. Fundamental to the confident apportionment of sediment to their lithogenic sources is the modelling process. Recent approaches have incorporated distributions throughout the modelling process including source contribution terms for two end‐member sources. The shift from modelling source samples to modelling samples drawn from distributions has removed relationships, including potential correlations between elemental concentrations, from the modelling process. Here, we present a novel modelling approach that re‐incorporates correlations between elemental concentrations and models distributions for source contribution terms for multiple source end members. Artificial mixtures, based on catchment sources samples, were created to test the accuracy of this correlated distribution model and also examine modelling approaches used in the literature. The most accurate model incorporates correlations between elements, uses the absolute mixing model difference and does not use any weighting. This model was then applied to identify the sources of sediment in three South East Queensland catchments and demonstrated that Quaternary Alluvium is the most dominant source of sediment in these catchments (μ 44%, σ 12%). This study demonstrates that it is important to understand how different weightings may impact modelling results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
999.
1000.
Comprehensive empirical data of the response of unstable streams over a range of environmental conditions are unavailable. In this study, as a substitute for empirical data, a physically based numerical model of channel evolution is used in a range of numerical simulation experiments designed to predict the sensitivity of channel response to changes in control variables. The scope of the study is limited by the scope of the numerical model which applies to straight, sand-bed streams with cohesive bank materials that have been destabilized by sediment starvation and evolve towards equilibrium through bed degradation followed by channel widening. Results are presented for stable and unstable channel conditions. Stable channel depths are most sensitive to channel discharge, though the critical threshold shear stress for the entrainment of cohesive bank materials and discharge are both significant in determining the width. The sediment load, channel gradient, bank material cohesion, size of failed bank material aggregates and the initial bank height have sensitivities an order of magnitude smaller than discharge for both width and depth. Variations in bed material characteristics within the sand-size range are found to have little impact on simulated stable channel morphology. For unstable channels, the relative dominance of parameter sensitivities is examined in the context of an empirical-conceptual model of channel evolution proposed by Thorne and Osman (1988), to highlight the relationships between parameter dominance, time, and the processes and forms characterizing individual stages of channel evolution. Rates of change with time of width and depth sensitivity parameters for five tested independent variables (discharge, sediment supply, channel gradient, bank material cohesion and bed material size) are found to vary as a function of time, such that different stages of channel evolution are characterized by variations in the relative dominance of tested variables. The results support the hypothesis proposed by Thorne and Osman (1988) that the critical bank height required to initiate mass-wasting and widening may be regarded as a geomorphic threshold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号