首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6217篇
  免费   2240篇
  国内免费   457篇
测绘学   187篇
大气科学   44篇
地球物理   4457篇
地质学   2911篇
海洋学   391篇
天文学   417篇
综合类   69篇
自然地理   438篇
  2024年   3篇
  2023年   10篇
  2022年   36篇
  2021年   105篇
  2020年   139篇
  2019年   339篇
  2018年   520篇
  2017年   526篇
  2016年   561篇
  2015年   519篇
  2014年   573篇
  2013年   857篇
  2012年   541篇
  2011年   512篇
  2010年   444篇
  2009年   339篇
  2008年   446篇
  2007年   344篇
  2006年   352篇
  2005年   315篇
  2004年   268篇
  2003年   254篇
  2002年   218篇
  2001年   180篇
  2000年   198篇
  1999年   86篇
  1998年   51篇
  1997年   46篇
  1996年   24篇
  1995年   19篇
  1994年   25篇
  1993年   14篇
  1992年   9篇
  1991年   11篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1971年   1篇
排序方式: 共有8914条查询结果,搜索用时 93 毫秒
991.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
992.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
采用2009年1月1日—2014年6月甘肃省境内所有地震的震相数据,分类拟合计算该地区一维速度模型,计算结果显示,利用少量震级较大地震数据来拟合的速度结果近似于用所有地震拟合结果。拟合得出新模型初步结果后,再从所有地震资料中选定台站包围好、震相标识规范的142个地震,利用Hyposat定位方法来计算莫霍面深度,参考其他模型的莫霍面深度,综合分析后在一定的扰动范围内通过Hyposat批处理程序进行迭代定位,对8 640次计算模型做残差对比,最终选取残差最小模型作为新模型,此模型除部分参数有较小的差别外与甘青模型基本一致。  相似文献   
994.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
995.
A comprehensive understanding of the dynamics of erosion and sedimentation in reservoirs under different management conditions is required to anticipate sedimentation issues and implement effective sediment management strategies. This paper describes a unique approach combining fluvial geomorphology tools and morphodynamic modeling for analyzing the sediment dynamics of an elongated hydropower reservoir subjected to management operations: the Génissiat Reservoir on the Rhône River. Functional sub‐reaches representative of the reservoir morphodynamics were delineated by adapting natural river segmentation methods to elongated reservoirs. The segmentation revealed the link between the spatial and temporal reservoir changes and the variability of longitudinal flow conditions during reservoir management operations. An innovative modeling strategy, incorporating the reservoir segmentation into two sediment transport codes, was implemented to simulate the dynamics of erosion and sedimentation at the reach scale during historic events. One code used a bedload approach, based on the Exner equation with a transport capacity formula, and the other used a suspended load approach based on the advection–dispersion equation. This strategy provided a fair quantification of the dynamics of erosion and sedimentation at the reach scale during different management operations. This study showed that the reservoir morphodynamics is controlled by bedload transport in upper reaches, graded suspended load transport of sand in middle reaches and suspended load transport of fine sediments in lower reaches. Eventually, it allowed a better understanding of the impact of dam management on sediment dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
996.
This paper presents a procedure to generate multidirectional conditional spectra (MDCS) that allow for the characterisation of seismic demands at different angles of incidence. Being conditional on a particular period and its direction of maximum response, it is considered to be a natural evolution of the conditional spectrum to account for the effects of directionality, that is, the variation of seismic demands as a function of the angle of incidence of ground motions, which can have a significant effect on the performance of different kinds of structures. The three main components needed for the generation of MDCS are explained in detail. Monte Carlo simulations are conducted using different sampling methods to assess the effects of incorporating the correlation between demands at different orientations for the same oscillator period, and a novel correlation model is proposed for this purpose. The statistical characteristics of MDCS, their relation with the conditional spectrum, the advantages of the MDCS over previous definitions of orientation‐specific spectra, and prospective future developments are discussed.  相似文献   
997.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   
998.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   
999.
Geomorphic effectiveness has been an influential concept in geomorphology since its introduction by Reds Wolman and John Miller in 1960. It provided a much needed framework to assess the significance of an event by comparing event magnitude to the resultant geomorphic effects. Initially, this concept was applied primarily in river channels, under the linear assumption that geomorphic responses to similarly sized flood events will be consistent. Numerous authors have since attempted to quantify a direct, proportional relationship between event magnitude and different forms of geomorphic response in a variety of geomorphic settings. In doing so, these investigations applied an array of metrics that were difficult to compare across different spatiotemporal scales, and physiographic and geomorphic environments. Critically, the emergence of other geomorphic concepts such as sensitivity, connectivity, thresholds, and recovery has shown that relationships between causes (events) and geomorphic effects (responses) are often complex and non‐linear. This paper disentangles the complex historical development of the geomorphic effectiveness concept and reviews the utility of various metrics for quantifying effectiveness. We propose that total energy (joules) is the most appropriate metric to use for quantifying the magnitude of disturbance events (cause) and volumetric sediment flux associated with landform modification is the most appropriate metric for quantifying geomorphic effects. While both metrics are difficult to quantify, they are the only ones which facilitate comparison across a range of spatiotemporal scales (comparability) in a variety of geomorphic environments (flexibility). The geomorphic effectiveness concept can continue to be useful provided that geomorphologists use flexible and comparable metrics. Today, geomorphologists are better prepared to consider the influence of non‐linear processes on determinations of geomorphic effectiveness, allowing investigators to not only determine if a disturbance event was effective but also to explain why or why not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号