首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5563篇
  免费   458篇
  国内免费   374篇
测绘学   487篇
大气科学   179篇
地球物理   627篇
地质学   1052篇
海洋学   382篇
天文学   2795篇
综合类   161篇
自然地理   712篇
  2024年   26篇
  2023年   46篇
  2022年   104篇
  2021年   116篇
  2020年   116篇
  2019年   187篇
  2018年   101篇
  2017年   119篇
  2016年   139篇
  2015年   141篇
  2014年   191篇
  2013年   242篇
  2012年   206篇
  2011年   250篇
  2010年   164篇
  2009年   467篇
  2008年   406篇
  2007年   490篇
  2006年   470篇
  2005年   374篇
  2004年   332篇
  2003年   319篇
  2002年   226篇
  2001年   211篇
  2000年   162篇
  1999年   172篇
  1998年   198篇
  1997年   83篇
  1996年   74篇
  1995年   40篇
  1994年   40篇
  1993年   40篇
  1992年   33篇
  1991年   18篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   13篇
  1986年   12篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1971年   2篇
排序方式: 共有6395条查询结果,搜索用时 203 毫秒
231.
We study the machine learning method for classifying the basic shape of space debris in both simulated and observed data experiments, where light curves are used as the input features. In the dataset for training and testing, simulated light curves are derived from four types of debris within different shapes and materials. Observed light curves are extracted from Mini-Mega TORTORA (MMT) database which is a publicly accessible source of space object photometric records. The experiments employ the deep convolutional neural network, make comparisons with other machine learning algorithms, and the results show CNN (Convolutional Neural Network) is better. In simulational experiments, both types of cylinder can be distinguished perfectly, and two other types of satellite have around 90% probability to be classified. Rockets and defunct satellites can achieve 99% success rate in binary classification, but in further sub-classes classifications, the rate becomes relatively lower.  相似文献   
232.
由于空间大地观测数据传输耗时及处理过程复杂, 导致极移测量值的获取存在时延, 无法满足对高精度的极移预报值有重大需求的应用领域. 针对极移复杂的时变特性, 提出一种基于奇异谱分析(singular spectrum analysis, SSA)的预报方法. 首先用SSA分离提取极移时序中的高频组分与低频组分; 其次建立最小二乘(least square, LS)外推与自回归(AutoreGressive, AR)模型对极移高频和低频组分进行组合预报. 结果表明, SSA方法能够准确地分离和提取极移低频和高频组分, 对低频和高频组分组合预报可以显著改善极移的中长期(30--365d)预报精度, 与国际地球自转和参考系服务局(International Earth Rotation and Reference Systems Service, IERS)提供的A公报中的极移预报值相比, SSA方法对极移PMX分量(本初子午线方向)和PMY分量(西90$^\circ$子午线方向)的中长期预报精度改进最高分别可达45.97%和62.44%. 研究结果验证了SSA方法对极移中长期预报改进的有效性.  相似文献   
233.
随着毫米波天文学和空间通信的重要性日益提高, 对天线性能提出了越来越高的要求, 而天线性能往往受到其反射器表面精度的限制. 微波全息技术是一种快速有效的检测反射面天线表面轮廓的测量技术. 通过微波全息测量得到天线口径场, 计算天马65m射电望远镜反射面与理想抛物面的偏差. 天马65m射电望远镜的主反射面板是放射状的, 有14圈. 面板的每个角都固定在面板下方促动器的螺栓上进行上下移动, 且相邻面板交点处的拐角共用一个促动器. 采用平面拟合的方法可以计算各块面板拐角处的调整值, 但是同一个促动器会得到4个不同的调整量. 通过平面拟合, 同时以天线照明函数为权重的平差计算方法得到相邻面板拐角的一个平差值, 即天马65m射电望远镜1104个促动器的最佳调整值. 通过多次调整和新算法的应用, 天马65m射电望远镜反射面的面形精度逐渐提高到了0.24mm.  相似文献   
234.
利用CHAMP (CHAllenging Minisatellite Payload)、GRACE-A (Gravity Recovery and Climate Experiment-A)、SWARM-C (The Earth''s Magnetic Field and Environment Explorers-C)等3颗极轨卫星的资料, 研究360—480km高层大气密度在低纬度区域的午夜极大值(Midnight Density Maximum, MDM)现象. MDM一般出现在23:00- 02:00 LT (Local Time)之间,峰值位置在低纬度15°以内,谷值位置在中纬度35°-45°附近,整体略偏向南半球,振幅约为平均密度的26%.随着高度增大以及太阳辐射水平的增强,MDM振幅呈减小趋势;冬至和夏至日附近的季节效应会减弱MDM振幅,在春秋分日的振幅最大.用3个主流大气模型DTM2000 (Drag Temperature Model 2000), NRLMSISE00 (US Naval Research Laboratory, Mass Spectrom-eter and Incoherent Scatter radar)和JB2008 (Jacchia- Bowman 2008 model)对MDM进行模拟,JB2008没有刻画出MDM现象;另两个模型低估了MDM效应,在360km和480km两个高度DTM2000模型的振幅仅为观测的46%和53%, NRLMSISE00模型仅为观测的33%和26%;模型没有准确刻画出MDM与高度、辐射水平和季节的关系.联合3颗卫星的资料,研究了-种基于地理纬度的6阶勒让德多项式,同时融合地方时和高度因素的经验函数,在振幅和相位上可以较好地刻画MDM特征,相关系数达到0.923,可为大气密度模型的修正提供借鉴,服务于低轨道航天器高精度轨道预报.  相似文献   
235.
鄱阳湖乐安河流域水质监测优化布点   总被引:4,自引:0,他引:4  
采用鄱阳湖乐安河流域13个监测断面1995-2002年8年的污染指标的监测平均值作为原始数据,应用物元分析法对各监测断面进行优化.在确定最佳和最次理想点的基础上,建立标准物元矩阵和节域物元矩阵,并结合综合关联函数,选出优化点位.同时应用相关分析中的距离分析和K-均值聚类法确定各监测点所属类别.综合这三种优化结果,最终确定乐安河流域可以由传统的13个监测点位优化为9个监测点位.  相似文献   
236.
用γ谱方法测定了南极长城站附近特有生物群落栖息地沉积物中放射性核素含量,地表沉积物中40K,137Cs,210Pb,226Ra,228Ra,228Th.和238U平均比活度,分别为143,7.56,24.1,3.65,5.36,4.15和6.5Bq/kg.同时测试了阿德雷岛企鹅栖息地粪土沉积地层中放射性核素含量,利用其中的210Pb比活度,210Pbex垂向变化特征,推演沉积物的沉积速率和地质历史年代:其中AD1-a柱样时间跨度约为74a(1928~2002年),据此计算了沉积速率为0.063mm/a(r=0.794),并讨论了在南极特定条件下,放射性核素示踪对定年影响以及与区域现代气候环境变化的内在联系.  相似文献   
237.
先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星是我国首颗太阳观测卫星, 主要观测太阳耀斑和日冕物质抛射以及产生它们的磁场结构. ASO-S卫星的科学应用系统是科学卫星工程的6大系统之一, 它连接科学用户和卫星数据, 为将卫星的科学数据转化为科学成果提供保障. 科学应用系统的数据库是连接软件与海量数据的枢纽, 为科学数据生产和用户服务及运行提供数据层的支撑. 介绍了科学应用系统的数据库架构设计、数据库的选择以及数据库性能优化和表样例. 这里的数据库包括观测计划、工程参数、运维日志、科学数据、定标数据和特征事件识别等数据库. 这些数据库的建设将为ASO-S卫星工程科学应用系统的顺利运行提供数据支撑, 也可以为未来其他科学卫星类似数据库的搭建提供参考和借鉴.  相似文献   
238.
针对BP (Back Propagation)神经网络模型预测卫星钟差中权值和阈值的最优化问题, 提出了基于遗传算法优化的BP神经网络卫星钟差短期预报模型, 给出了遗传算法优化BP神经网络的基本思想、具体方法和实施步骤. 为验证该优化模型的有效性和可行性, 利用北斗卫星导航系统(BeiDou navigation satellite system, BDS)卫星钟差数据进行钟差预报精度分析, 并将其与灰色模型(GM(1,1))和BP神经网络模型预报的结果比较分析. 结果表明: 该模型在短期钟差预报中具有较好的精度, 优于GM(1,1)模型和BP神经网络模型.  相似文献   
239.
接收机是射电天文中用于探测微弱射电信号的重要接收设备.接收机的强度校准就是将接收机对射电源的响应转换为天文意义上的流量密度.常规方法就是使用经典的冷热负载法,将接收机自身的强度响应转换为一个等效的温度值,之后再据此对射电源做进一步标定.通过搭建基于斩波轮技术的K波段接收机强度校准平台,使用斩波轮法测试K波段常温接收机的噪声温度,并与传统冷热负载法的测试结果进行比对.结果显示,在晴好天气条件下,斩波轮法在30°、90°仰角下噪声温度的最大测试误差为7.5%和8.4%,可以很好地应用于实际噪声温度测试中;但在5°仰角测试中,由于过低仰角引入了地面噪声,使得斩波轮法的测试误差上升至20%–30%之间而无法使用.希望在此基础上进一步开展K波段天空亮温度的理论计算与实测,从而完善斩波轮技术的应用,使之可以满足在不同气象条件下的噪声校准测试需求.  相似文献   
240.
机器学习在当今诸多领域已经取得了巨大的成功,但是机器学习的预测效果往往依赖于具体问题.集成学习通过综合多个基分类器来预测结果,因此,其适应各种场景的能力较强,分类准确率较高.基于斯隆数字巡天(Sloan Digital Sky Survey,SDSS)计划恒星/星系中最暗源星等集分类正确率低的问题,提出一种基于Stacking集成学习的恒星/星系分类算法.从SDSS-DR7(SDSS Data Release 7)中获取完整的测光数据集,并根据星等值划分为亮源星等集、暗源星等集和最暗源星等集.仅针对分类较为复杂且困难的最暗源星等集展开分类研究.首先,对最暗源星等集使用10折嵌套交叉验证,然后使用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、XGBoost(eXtreme Gradient Boosting)等算法建立基分类器模型;使用梯度提升树(Gradient Boosting Decision Tree,GBDT)作为元分类器模型.最后,使用基于星系的分类正确率等指标,与功能树(Function Tree,FT)、SVM、RF、GBDT、XGBoost、堆叠降噪自编码(Stacked Denoising AutoEncoders,SDAE)、深度置信网络(Deep Belief Network,DBN)、深度感知决策树(Deep Perception Decision Tree,DPDT)等模型进行分类结果对比分析.实验结果表明,Stacking集成学习模型在最暗源星等集分类中要比FT算法的星系分类正确率提高了将近10%.同其他传统的机器学习算法、较强的提升算法、深度学习算法相比,Stacking集成学习模型也有较大的提升.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号