首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9710篇
  免费   2296篇
  国内免费   772篇
测绘学   88篇
大气科学   11篇
地球物理   7642篇
地质学   3009篇
海洋学   580篇
天文学   8篇
综合类   434篇
自然地理   1006篇
  2024年   32篇
  2023年   130篇
  2022年   250篇
  2021年   322篇
  2020年   413篇
  2019年   442篇
  2018年   359篇
  2017年   348篇
  2016年   315篇
  2015年   398篇
  2014年   458篇
  2013年   494篇
  2012年   546篇
  2011年   552篇
  2010年   461篇
  2009年   516篇
  2008年   540篇
  2007年   667篇
  2006年   700篇
  2005年   566篇
  2004年   572篇
  2003年   503篇
  2002年   422篇
  2001年   304篇
  2000年   340篇
  1999年   292篇
  1998年   283篇
  1997年   240篇
  1996年   275篇
  1995年   213篇
  1994年   204篇
  1993年   184篇
  1992年   119篇
  1991年   70篇
  1990年   50篇
  1989年   55篇
  1988年   46篇
  1987年   35篇
  1986年   23篇
  1985年   7篇
  1984年   1篇
  1981年   4篇
  1980年   2篇
  1979年   16篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
The accurate analysis of the response of isolated structures requires the application of appropriate models of isolation devices. The purpose of this paper is to analyse a nonlinear strain rate dependent model of a high damping rubber bearing which simulates the horizontal behaviour of the device under specified vertical load using a nonlinear elastic spring-dashpot element. The effectiveness of the model is checked by fitting the experimental data concerning three different rubber bearings. The results of the study show that the model can simulate the bearing behaviour over a wide shear strain range with small simulation errors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
132.
We document strong seismic scattering from around the top of the mantle Transition Zone in all available high resolution explosion seismic profiles from Siberia and North America. This seismic reflectivity from around the 410 km discontinuity indicates the presence of pronounced heterogeneity in the depth interval between 320 and 450 km in the Earth’s mantle. We model the seismic observations by heterogeneity in the form of random seismic scatterers with typical scale lengths of kilometre size (10-40 km by 2-10 km) in a 100-140 km thick depth interval. The observed heterogeneity may be explained by changes in the depths to the α-β-γ spinel transformations caused by an unexpectedly high iron content at the top of the mantle Transition Zone. The phase transformation of pyroxenes into the garnet mineral majorite probably also contributes to the reflectivity, mainly below a depth of 400 km, whereas we find it unlikely that the presence of water or partial melt is the main cause of the observed strong seismic reflectivity. Subducted oceanic slabs that equilibrated at the top of the Transition Zone may also contribute to the observed reflectivity. If this is the main cause of the reflectivity, a substantial amount of young oceanic lithosphere has been subducted under Siberia and North America during their geologic evolution. Subducted slabs may have initiated metamorphic reactions in the original mantle rocks.  相似文献   
133.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
134.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
135.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
136.
This paper illustrates the seismic risk preliminary estimates of two different groups of structures located on the territory of the Friuli–Venezia Giulia region (NE Italy) : the first group includes some special industrial plants, and the second group includes bridges and tunnels belonging to the regional highway network. The part of the study on special industrial plants tries to evaluate the degree of expected damage, taking into account their structural typology and ground shaking expressed in terms of macroseismic intensity. The second part of the study is an application of the HAZUS methodology to the tunnels and bridges of a highway network: the combination of expected ground shaking and the construction characteristics lead to very different risk levels, especially when considering the bridges. The resulting damage levels to bridges and tunnels are still only indicative because of the fragility curves used in the evaluations: they were developed for existing bridge and tunnel structural typologies in the U.S.A. Moreover, both examples show the power of GIS technology in storing, elaborating, and mapping spatial data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
137.
20301 Pn arrival time data are collected from the seismological bulletins of both national and regional seismic networks. Pn travel time residuals are tomographically inverted for the Pn velocity structure of uppermost mantle beneath North China. The result indicates that the average Pn velocity in North China is 7.92 km/s, and the velocity varies laterally from ?0.21 to +0.29 km/s around the average. The approximately NNE trending high and low velocity regions arrange alternatively west-eastward. From west to east we can see high velocity in the middle Ordos region, the Shanxi graben low, the Jizhong depression high, the west Shandong uplift and Bohai Sea low, and the high velocity region to the east of the Tanlu fault. In the southern boundary zone of the North China block, except for the high velocity in the Qingling Mountains region, the velocity is generally lower than the average. Obvious velocity anisotropy is seen in the Datong Cenozoic volcanic region, with the fast velocity direction in NNE-SSW. Notable velocity anisotropy is also seen around the Bay of Bohai Sea, and the fast velocity directions seem to show a rotation pattern, possibly indicating a flow-like deformation in the uppermost mantle there. The Pn velocity variations show a reversed correlation with the Earth's heat flow. The low Pn velocity regions generally show high heat flow, e.g., the Shanxi graben and Bohai Sea region. While the high Pn velocity regions usually manifest low heat flow, e.g., the region of Jizhong depression. This indicates that the Pn velocity variation in the study region is mainly aroused by the regional temperature difference in the uppermost mantle. Strong earthquakes in the crust tend to occur in the region with the abnormal low Pn velocity, or in the transition zone between high and low Pn velocity regions. The earthquakes in the low velocity region are shallower, while that in the transition zone are deeper.  相似文献   
138.
东营凹陷第三系隐蔽油气藏的地震预测研究   总被引:6,自引:4,他引:6  
论述了山东省东营凹陷第三系隐蔽油气藏(四大类:岩性型、地层型、裂隙型和复合型)的识别与地震预测技术,应用相干分析、地震属性分析和Stratamagic等地球物理勘探技术,对隐蔽油气藏进行了预测、描述及油气综合评价,为勘探开发提供了井位,取得了显著的效果。  相似文献   
139.
For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement with other numerical results (Boundary Element Method) and experimental ones is fully satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance. To cite this article: J.-F. Semblat et al., C. R. Geoscience 335 (2003).  相似文献   
140.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号