首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10105篇
  免费   2244篇
  国内免费   723篇
测绘学   283篇
大气科学   91篇
地球物理   7458篇
地质学   3060篇
海洋学   514篇
天文学   25篇
综合类   464篇
自然地理   1177篇
  2024年   15篇
  2023年   73篇
  2022年   236篇
  2021年   306篇
  2020年   370篇
  2019年   449篇
  2018年   349篇
  2017年   346篇
  2016年   296篇
  2015年   357篇
  2014年   459篇
  2013年   557篇
  2012年   550篇
  2011年   578篇
  2010年   481篇
  2009年   571篇
  2008年   599篇
  2007年   717篇
  2006年   732篇
  2005年   609篇
  2004年   612篇
  2003年   528篇
  2002年   441篇
  2001年   340篇
  2000年   358篇
  1999年   304篇
  1998年   290篇
  1997年   238篇
  1996年   275篇
  1995年   212篇
  1994年   202篇
  1993年   180篇
  1992年   113篇
  1991年   70篇
  1990年   51篇
  1989年   54篇
  1988年   46篇
  1987年   32篇
  1986年   26篇
  1985年   8篇
  1984年   4篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   16篇
  1978年   2篇
  1976年   2篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
381.
INTRODUCTIONThe method of probabilistic seismic risk analysis was proposed by Cornell in1968(Cornell,1968).After more than30years development,it has become the main method for seismic riskassessment of engineering sites and seismic zonation,and has been u…  相似文献   
382.
This paper presents pseudo‐dynamic test results on the in‐plane seismic behaviour of infilled frames. Thirteen single‐storey, single‐bay, half‐size‐scale, reinforced concrete‐frame specimens, most of which infilled with non‐structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
383.
This paper presents a numerical investigation on the seismic response of multidrum classical columns. The motivation for this study originates from the need to understand: (a) the level of ground shaking that classical multidrum columns can survive, and (b) the possible advantages or disadvantages of retrofitting multidrum columns with metallic shear links that replace the wooden poles that were installed in ancient times. The numerical study presented in this paper is conducted with the commercially available software Working Model 2D?, which can capture with fidelity the sliding, rocking, and slide‐rocking response of rigid‐body assemblies. This paper validates the software Working Model by comparing selected computed responses with scarce analytical solutions and the results from in‐house numerical codes initially developed at the University of California, Berkeley, to study the seismic response of electrical transformers and heavy laboratory equipment. The study reveals that relative sliding between drums happens even when the g‐value of the ground acceleration is less than the coefficient of friction, µ, of the sliding interfaces and concludes that: (a) typical multidrum classical columns can survive the ground shaking from strong ground motions recorded near the causative faults of earthquakes with magnitudes Mw=6.0–7.4; (b) in most cases multidrum classical columns free to dislocate at the drum interfaces exhibit more controlled seismic response than the monolithic columns with same size and slenderness; (c) the shear strength of the wooden poles has a marginal effect on the sliding response of the drums; and (d) stiff metallic shear links in‐between column drums may have an undesirable role on the seismic stability of classical columns and should be avoided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
384.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
385.
Models capable of estimating losses in future earthquakes are of fundamental importance for emergency planners, for the insurance and reinsurance industries, and for code drafters. Constructing a loss model for a city, region or country involves compiling databases of earthquake activity, ground conditions, attenuation equations, building stock and infrastructure exposure, and vulnerability characteristics of the exposed inventory, all of which have large associated uncertainties. Many of these uncertainties can be classified as epistemic, implying—at least in theory—that they can be reduced by acquiring additional data or improved understanding of the physical processes. The effort and cost involved in refining the definition of each component of a loss model can be very large, for which reason it is useful to identify the relative impact on the calculated losses due to variations in these components. A mechanically sound displacement‐based approach to loss estimation is applied to a test case of buildings along the northern side of the Sea of Marmara in Turkey. Systematic variations of the parameters defining the demand (ground motion) and the capacity (vulnerability) are used to identify the relative impacts on the resulting losses, from which it is found that the influence of the epistemic uncertainty in the capacity is larger than that of the demand for a single earthquake scenario. Thus, the importance of earthquake loss models which allow the capacity parameters to be customized to the study area under consideration is highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
386.
Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan area is divided into two seismic regions and six seismic belts. Then, correlation fractal dimensions of all the regions and belts are calculated, and the fractal characteristics of hypocenteral distribution can be quantitatively analyzed. Finally, multifractal dimensions Dq and f(α) are calculated by using the earthquake catalog of the past 11 years in the Taiwan area. This study indicates that (1) there exists a favorable corresponding relationship between spatial images of seismic activity described with correlation fractal dimension analysis and tectonic settings; (2) the temporal structure of earthquakes is not single but multifractal fractal, and the pattern of Dq variation with time is a good indicator for predicting strong earthquake events.  相似文献   
387.
388.
389.
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号