首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10105篇
  免费   2244篇
  国内免费   723篇
测绘学   283篇
大气科学   91篇
地球物理   7458篇
地质学   3060篇
海洋学   514篇
天文学   25篇
综合类   464篇
自然地理   1177篇
  2024年   15篇
  2023年   73篇
  2022年   236篇
  2021年   306篇
  2020年   370篇
  2019年   449篇
  2018年   349篇
  2017年   346篇
  2016年   296篇
  2015年   357篇
  2014年   459篇
  2013年   557篇
  2012年   550篇
  2011年   578篇
  2010年   481篇
  2009年   571篇
  2008年   599篇
  2007年   717篇
  2006年   732篇
  2005年   609篇
  2004年   612篇
  2003年   528篇
  2002年   441篇
  2001年   340篇
  2000年   358篇
  1999年   304篇
  1998年   290篇
  1997年   238篇
  1996年   275篇
  1995年   212篇
  1994年   202篇
  1993年   180篇
  1992年   113篇
  1991年   70篇
  1990年   51篇
  1989年   54篇
  1988年   46篇
  1987年   32篇
  1986年   26篇
  1985年   8篇
  1984年   4篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   16篇
  1978年   2篇
  1976年   2篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
192.
193.
194.
One of the main factors that affects the performance of MLP neural networks trained using the backpropagation algorithm in mineral-potential mapping isthe paucity of deposit relative to barren training patterns. To overcome this problem, random noise is added to the original training patterns in order to create additional synthetic deposit training data. Experiments on the effect of the number of deposits available for training in the Kalgoorlie Terrane orogenic gold province show that both the classification performance of a trained network and the quality of the resultant prospectivity map increasesignificantly with increased numbers of deposit patterns. Experiments are conducted to determine the optimum amount of noise using both uniform and normally distributed random noise. Through the addition of noise to the original deposit training data, the number of deposit training patterns is increased from approximately 50 to 1000. The percentage of correct classifications significantly improves for the independent test set as well as for deposit patterns in the test set. For example, using ±40% uniform random noise, the test-set classification performance increases from 67.9% and 68.0% to 72.8% and 77.1% (for test-set overall and test-set deposit patterns, respectively). Indices for the quality of the resultant prospectivity map, (i.e. D/A, D × (D/A), where D is the percentage of deposits and A is the percentage of the total area for the highest prospectivity map-class, and area under an ROC curve) also increase from 8.2, 105, 0.79 to 17.9, 226, 0.87, respectively. Increasing the size of the training-stop data set results in a further increase in classification performance to 73.5%, 77.4%, 14.7, 296, 0.87 for test-set overall and test-set deposit patterns, D/A, D × (D/A), and area under the ROC curve, respectively.  相似文献   
195.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   
196.
197.
198.
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号