首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13284篇
  免费   2782篇
  国内免费   1546篇
测绘学   1478篇
大气科学   626篇
地球物理   8162篇
地质学   4331篇
海洋学   1004篇
天文学   110篇
综合类   736篇
自然地理   1165篇
  2024年   62篇
  2023年   203篇
  2022年   412篇
  2021年   523篇
  2020年   616篇
  2019年   673篇
  2018年   514篇
  2017年   569篇
  2016年   508篇
  2015年   600篇
  2014年   717篇
  2013年   772篇
  2012年   835篇
  2011年   813篇
  2010年   608篇
  2009年   744篇
  2008年   758篇
  2007年   907篇
  2006年   888篇
  2005年   742篇
  2004年   713篇
  2003年   635篇
  2002年   508篇
  2001年   394篇
  2000年   416篇
  1999年   358篇
  1998年   344篇
  1997年   297篇
  1996年   313篇
  1995年   243篇
  1994年   234篇
  1993年   210篇
  1992年   123篇
  1991年   87篇
  1990年   54篇
  1989年   62篇
  1988年   49篇
  1987年   37篇
  1986年   24篇
  1985年   7篇
  1984年   2篇
  1981年   4篇
  1980年   4篇
  1979年   18篇
  1977年   1篇
  1976年   1篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
井间地震走时波形层析成像方法   总被引:2,自引:1,他引:2  
裴正林  余钦范 《现代地质》2001,15(3):333-338
提出了井间地震走时波形顺序反演方法。该方法先利用井间地震走时反演得到速度模型的低频成分 ,然后用井间地震波形反演获得速度模型的高频成分。数值模型试验和实际应用结果表明 ,该方法反演稳健 ,提高了走时成像的分辨率 ,克服了波形成像易于陷入局部极小的缺陷 ,实现了快速高分辨率成像。  相似文献   
932.
Conclusions The sequence of the November 29, 1999 Xiuyan, Liaoning, earthquake withM S=5.4 is relocated, and its rupture process is analyzed. Results are as follows: The rupture extended mainly before the January 12, 2000,M S=5.1 earthquake. There are two phases of rupture extending: The first phase was before the November 29, 1999,M S=5.4 earthquake, epicenters were situated within a small region with a dimension of about 5 km, and the focal depth increased. It shows that the rupture mainly extended from shallow part to deep in the vertical direction. The second phase was between theM S=5.4 earthquake and theM S=5.1 earthquake, earthquakes migrated along southeast, the focal depth decreased. It indicates that the rupture extended along southeast and from deep to shallow part. Foundation item: The Project of “Mechanism and Prediction of the Strong Continental Earthquake” (95-13-05-04). Contribution No. 01FE2017, Institute of Geophysics, China Seismological Bureau.  相似文献   
933.
Some new imaging formulas for seismic reflection wave and their theoretical basis are given. Phenomena of wave propagation should be characterized by instantaneous spectrum and expressed by complex function of three variables (time, space and frequency) in mathematics. Various physical parameters of medium are also complex functions of two variables (space and frequency). The relationship between reflection coefficient of medium and spectrum of reflected wave is given. Multi-reflection and filter of formations are considered in inversion formulas. Problems in classical convolution model and wave equation are illustrated. All these inversion formulas can be used to image underground medium by wavelet transform and method of “3-basic colors”. Different colors mean different media.  相似文献   
934.
Three earthquakes that happened over two days in May 1951 caused extensive damage to villages in a small area of eastern El Salvador (Central America). Contemporary hypocentral solutions indicated focal depths, confirmed by re-calculations using available seismic data, of the order of 90 km, suggesting events associated with the subducted Cocos plate. Macroseismic observations strongly indicate that the earthquakes were of very shallow focus and this is supported by wave-form modeling and the appearance of seismograms recorded in Guatemala. A re-evaluation of the location and source characteristics for these events is presented, together with a fault plane solution and additional macroseismic evidence. The implications for seismic hazard and risk assessment in Central America, where shallow earthquakes of moderate magnitude, frequently occurring in clusters, pose the greatest threat to settlements which, like the area affected by these events, are concentrated along the axis of Quaternary volcanoes.  相似文献   
935.
简要介绍了第13届国际变形机理、流变学和构造学学术会议的概况和特点,综述了地震变形作用的研究现状。  相似文献   
936.
This paper presents a review of the advances in strong motion recording since the early 1930s, based mostly on the experiences in the United States. A particular emphasis is placed on the amplitude and spatial resolution of recording, which both must be ‘adequate’ to capture the nature of strong earthquake ground motion and response of structures. The first strong motion accelerographs had optical recording system, dynamic range of about 50 dB and useful life longer than 30 years. Digital strong motion accelerographs started to become available in the late 1970s. Their dynamic range has been increasing progressively, and at present is about 135 dB. Most models have had useful life shorter than 5–10 years. One benefit from a high dynamic range is early trigger and anticipated ability to compute permanent displacements. Another benefit is higher sensitivity and hence a possibility to record smaller amplitude motions (aftershocks, smaller local earthquakes and distant large earthquakes), which would augment significantly the strong motion databases. The present trend of upgrading existing and adding new stations with high dynamic range accelerographs has lead to deployment of relatively small number of new stations (the new high dynamic range digital instruments are 2–3 times more expensive than the old analog instruments or new digital instruments with dynamic range of 60 dB or less). Consequently, the spatial resolution of recording, both of ground motion and structural response, has increased only slowly during the past 20 years, by at most a factor of two. A major (and necessary) future increase in the spatial resolution of recording will require orders of magnitude larger funding, for purchase of new instruments, their maintenance, and for data retrieval, processing, management and dissemination. This will become possible only with an order of magnitude cheaper and ‘maintenance-free’ strong motion accelerographs. In view of the rapid growth of computer technology this does not seem to be (and should not be) out of our reach.  相似文献   
937.
An integrated geophysical survey which combines vertical seismic profile method, shallow reflection seismic method, electric sounding, soil temperature measurement and radioactive gas measurement was used to investigate Zhaoshuling landslide in the new site of Badong County and to assess the stability of the landslide. By rational use of these methods together with borehole geological profile and other geological information, the spatial distribution of the landslide body, the formations and structures within and without the landslide body were determined and the stability of the landslide was also assessed, thus making great contribution to the successful and rational investigation and assessment of the landslide.  相似文献   
938.
The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.  相似文献   
939.
For transient, high frequency, and pulse like excitation of structures in the near field of strong earthquakes, the classical design approach based on relative response spectrum and mode superposition may not be conservative. For such excitations, it is more natural to use wave propagation methods. In this paper (Part I), we review several two-dimensional wave propagation models of buildings and show results for theoretical dispersion curves computed for these models. We also estimate the parameters of these models that would correspond to a seven-story reinforced concrete building in Van Nuys, California. Ambient vibration tests data for this building imply vertical shear wave velocity βz=112 m/s and anisotropy factor βxz=0.55 for NS vibrations, and βz=88 m/s and βxz=1 for EW vibrations. The velocity of shear waves propagating through the slabs is estimated to be about 2000 m/s. In the companion paper (Part II), we estimate phase velocities of vertically and horizontally propagating waves between seven pairs of recording points in the building using recorded response to four earthquakes.  相似文献   
940.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号