首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   247篇
  国内免费   50篇
测绘学   5篇
地球物理   592篇
地质学   151篇
海洋学   3篇
综合类   23篇
自然地理   59篇
  2023年   3篇
  2022年   20篇
  2021年   19篇
  2020年   11篇
  2019年   16篇
  2018年   17篇
  2017年   28篇
  2016年   20篇
  2015年   27篇
  2014年   25篇
  2013年   30篇
  2012年   17篇
  2011年   29篇
  2010年   45篇
  2009年   50篇
  2008年   71篇
  2007年   40篇
  2006年   44篇
  2005年   40篇
  2004年   31篇
  2003年   20篇
  2002年   32篇
  2001年   26篇
  2000年   24篇
  1999年   25篇
  1998年   19篇
  1997年   16篇
  1996年   19篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1979年   6篇
  1954年   2篇
排序方式: 共有833条查询结果,搜索用时 109 毫秒
51.
Aiming  Ian Shinichi  Uda 《Island Arc》1996,5(1):1-15
Abstract The earthquake surface ruptures on the northern side of Awaji Island accompanying the 1995 Southern Hyogo Prefecture Earthquake in Japan consist of three earthquake surface rupture zones called the Nojima, Matsuho, and Kusumoto Earthquake Surface Rupture Zones. The Nojima Earthquake Surface Rupture Zone is - 18 km long and was formed from Awaji-cho at the northern end of Awaji Island to Ichinomiya-cho. It occurred along the pre-existing Nojima geological fault in the northern segment and as a new fault in the southern segment. The northern segment of the Nojima Earthquake Surface Rupture Zone is composed of some subparallel shear faults showing a right-step en echelon form and many extensional cracks showing a left-step en echelon form. The southern segment consists of some discontinuous surface ruptures which are concentrated in a narrow zone a few tens of meters in width. This surface rupture zone shows a general trend striking north 30°-60° east, and dipping 75°-85° east. The deformational topographies and striations on the fault plane generated during the co-seismic displacement show that the Nojima Earthquake Surface Rupture Zone is a right-lateral strike-slip fault with some reverse component. Displacements measured at many of the outcrops are generally 100-200 em horizontally and 50-100 em vertically in the northern segment and a few em to 20 em both horizontally and vertically in the southern segment. The largest displacements are 180 em horizontally, 130 em vertically, and 215 em in netslip measured at the Hirabayashi fault scarp. The Matsuho Earthquake Surface Rupture Zone striking north 40°-60° west was also found along the coastline trending northwest-southeast in Awaji-cho for ~1 km at the northern end of Awaji Island. The Kusumoto Earthquake Surface Rupture Zone occurred along the pre-existing Kusumoto geological fault for ~ 1.5 km near the northeastern coastline, generally striking north 35°-60° east, dipping 60°-70° west. From the morphological and geomorphological characteristics, the Nojima Earthquake Surface Rupture Zone can be divided into four segments which form a right-step en echelon formation. The geological and geomorphological evidence and the aftershock epicenter distributions show clearly that the distributions and geometry of these four segments are controlled by the pre-existing geological structures.  相似文献   
52.
53.
54.
日本地震电磁辐射研究的进展与动向   总被引:3,自引:0,他引:3  
  相似文献   
55.
Spatial distribution of sources of strong and large earthquakes on the Xiaojiang fault zone in eastern Yunnan is studied according to historical earthquake data. 7 segments of relatively independent sources or basic units of rupture along the fault zone have been identified preliminarily. On every segment, time intervals between main historical earthquakes are generally characterized by “time-predictable” recurrence behavior with indetermination. A statistic model for the time intervals between earthquakes of the fault zone has been preliminarily established. And a mathematical method has been introduced into this paper to reckon average recurrence interval between earthquakes under the condition of having known the size of the last event at a specific segment. Based on these, ranges of the average recurrence intervals given confidence have been estimated for events of various sizes on the fault zone. Further, the author puts forward a real-time probabilistic model that is suitable to analyze seismic potential for individual segments along a fault zone on which earthquake recurrence intervals have been characterized by quasi-time-predictable behavior, and applies this model to calculate conditional probabilities and probability gains of earthquake recurring on the individual segments of the Xiaojiang fault zone during the period from 1991 to 2005. As a consequence, it has shown that two parts of this fault zone, from south of Dongchuan to Songming and from Chengjiang to Huaning, have relatively high likelihoods for strong or large earthquake recurring in the future. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 322–330, 1993.  相似文献   
56.
57.
IntroductionAnearthquakeofMs=7.9occurredinMaul,Xizang(Tibet),Chinaat10:02f55.4(UTC),No')ember8.1997.TheepicenterdeterminedbyChinaNationalSeismographNetwork(CNSN)is87.33"E.3>.26'N,thefocaldepthis40km,andthemagnitudeisMs=7.4.Accordingtothedeterllllnati...  相似文献   
58.
In this paper, the new LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling the dynamic process of the MS=7.8 Tangshan earthquake on July 28, 1976 and obtain directly the dynamic and quasi-static dislocations, shear stress drops, fracture velocities of the Tangshan earthquake fault. The simulation shows that the slip history at each point of the fault is different. The displacement vectors at the concave side of the fault is greater than that of the convex side of the fault. The "over shoot" of the fault slip is greatest at the middle part of the fault and attenuates to its ends. The rupture velocities of the fault from the epicenter towards south-west and towards north-east are 3.08 m/s and 1.18 m/s, respectively, the average one is 2.13 m/s. The maximum dynamic and quasi-static dislocations are 7.1 m and 6.2 m respectively, the average quasi-static one on the fault is 4.5 m. The maximum dynamic and quasi-static shear stress drops are 8.1 MPa and 5.4 MPa, respectively, the average quasi-static shear stress drop is 3.9 MPa.We found that the rupture velocities and shear stress are related to the initial stress states of the fault.  相似文献   
59.
新疆伽师强震群强震主破裂面走向初探   总被引:7,自引:2,他引:5       下载免费PDF全文
1997年1月21日-1998年8月27日新疆伽师发生了包含9次6级地震的强震群,震源机制解表明有NE向和NW向两个节面.有观点认为主破裂面为NNW向.本通过数字地震台阵的余震序列精确定位、震源破裂过程及滑动方向、震群空间分布图像、地震烈度等震线长轴走向和微、宏观震中动态变化方向等多种方法分析后,综合判定9次6级地震的主破裂面走向极可能为北东方向.  相似文献   
60.
The Chi Chi earthquake (Mw7.6) occurred at 17:47 UTC on Sept. 20,1999 (01:47 September 21, 1999, local time) in central Taiwan. CWB located the epi- center at (120.82°E; 23.85°N) and the focal depth 8 km. Chi Chi earthquake is the best documented earth- quake ever recorded. The abundance and quality of its near-source observations present an unparalleled op- portunity for studying the rupture history from a close distance. More than 400 free field digital accelerome- ters with 3-compon…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号