首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   73篇
  国内免费   4篇
测绘学   5篇
地球物理   248篇
地质学   16篇
海洋学   6篇
天文学   1篇
综合类   3篇
自然地理   3篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   4篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1992年   1篇
  1991年   1篇
排序方式: 共有282条查询结果,搜索用时 62 毫秒
71.
A new methodology for the development of bridge‐specific fragility curves is proposed with a view to improving the reliability of loss assessment in road networks and prioritising retrofit of the bridge stock. The key features of the proposed methodology are the explicit definition of critical limit state thresholds for individual bridge components, with consideration of the effect of varying geometry, material properties, reinforcement and loading patterns on the component capacity; the methodology also includes the quantification of uncertainty in capacity, demand and damage state definition. Advanced analysis methods and tools (nonlinear static analysis and incremental dynamic response history analysis) are used for bridge component capacity and demand estimation, while reduced sampling techniques are used for uncertainty treatment. Whereas uncertainty in both capacity and demand is estimated from nonlinear analysis of detailed inelastic models, in practical application to bridge stocks, the demand is estimated through a standard response spectrum analysis of a simplified elastic model of the bridge. The simplified methodology can be efficiently applied to a large number of bridges (with different characteristics) within a road network, by means of an ad hoc developed software involving the use of a generic (elastic) bridge model, which derives bridge‐specific fragility curves. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
72.
Rocking isolation has been increasingly studied as a promising design concept to limit the earthquake damage of civil structures. Despite the difficulties and uncertainties of predicting the rocking response under individual earthquake excitations (due to negative rotational stiffness and complex impact energy loss), in a statistical sense, the seismic performance of rocking structures has been shown to be generally consistent with the experimental outcomes. To this end, this study assesses, in a probabilistic manner, the effectiveness of using rocking isolation as a retrofit strategy for single-column concrete box-girder highway bridges in California. Under earthquake excitation, the rocking bridge could experience multi-class responses (eg, full contacted or uplifting foundation) and multi-mode damage (eg, overturning, uplift impact, and column nonlinearity). A multi-step machine learning framework is developed to estimate the damage probability associated with each damage scenario. The framework consists of the dimensionally consistent generalized linear model for regression of seismic demand, the logistic regression for classification of distinct response classes, and the stepwise regression for feature selection of significant ground motion and structural parameters. Fragility curves are derived to predict the response class probabilities of rocking uplift and overturning, and the conditional damage probabilities such as column vibrational damage and rocking uplift impact damage. The fragility estimates of rocking bridges are compared with those for as-built bridges, indicating that rocking isolation is capable of reducing column damage potential. Additionally, there exists an optimal slenderness angle range that enables the studied bridges to experience much lower overturning tendencies and significantly reduced column damage probabilities at the same time.  相似文献   
73.
为研究曲线桥梁在多维地震激励下考虑桩-土动力相互作用的地震响应特性,本文建立了空间桩-土脱离、摩阻和土体压缩非线性理论分析模型。为简化计算将该非线性弹簧模型进行线性化处理,结合有限元ANSYS分析平台建立了黄土场地的曲线桥仿真分析模型,对考虑桩-土相互作用的曲线桥进行了多维多工况数值分析,对比研究了曲线主梁跨中弯矩、墩底剪力和弯矩及桥墩顶位移的地震响应。结果表明:考虑桩-土相互作用的曲线桥梁主梁跨中内力与地震波输入方向密切相关,三维地震作用下主梁内力最大;各工况地震荷载作用下桥墩底部径向剪力响应比切向剪力响应大很多,而桥墩径向弯矩比切向弯矩略小;同一工况下不同桥墩顶切向位移响应大小相当,而径向位移差异较大。在进行非规则曲线桥梁抗震设计时,应充分考虑多维和单维地震激励输入工况。  相似文献   
74.
The present study explores analytically the concept of rocking isolation in bridges considering for the first time the influence of the abutment-backfill system. The dynamic response of rocking bridges with free-standing piers of same height and same section is examined assuming negligible deformation for the substructure and the superstructure. New relationships for the prediction of the bridge rocking motion are derived, including the equation of motion and the restitution coefficient at each impact at the rocking interfaces. The bridge structure is found to be susceptible to a failure mode related to the failure of the abutment-backfill system, which can occur prior to the well-known overturning of the rocking piers. Thus, a new failure spectrum is proposed called Failure Minimum Acceleration Spectrum (FMAS) which extends the overturning spectrum put forward in previous studies, and it differs in principle from the latter. The comparison with the dynamic response of bridges modelled as rocking frames without abutments reveals not only that seat-type abutments and their backfill have a generally beneficial effect on the seismic performance of rocking pier bridges by suppressing the free rocking motion of the frame system, but also that the simple frame model cannot capture all salient features of the rocking bridge response as it misses potential failure modes, overestimating the rocking bridge's safety when these modes are critical.  相似文献   
75.
Allowing flexible structures to uplift and rock during earthquakes can significantly reduce the force demands and residual displacements. However, such structures are still susceptible to large deformations and accelerations that can compromise their functionality. In this paper, we examine the dynamic response of elastic rocking oscillators and suggest that their lateral drifts and accelerations can be limited effectively by using inerter devices. To this end, we offer a detailed examination of the effects of structural flexibility on the efficiency of the proposed system. The analytical expressions governing the motion of deformable structures with base uplift are revisited to incorporate the effects of the supplemental rotational inertia. The proposed model is then used to study the structural demands of flexible rocking structures under coherent pulses as well as noncoherent real pulse-like ground motions. Our results show that combining rocking with inerters can be an efficient strategy to control the deformation and acceleration demands in uplifting flexible systems.  相似文献   
76.
Abstract

This paper presents rocking vibrations of a rigid foundation resting on a multi-layered poroelastic half-space. The foundation is assumed to be rigid and massless, and subjected to a time–harmonic moment. In addition, each layer of the multi-layered half-space is governed by Biot’s theory of poroelastodynamics. The contact surface between the foundation and the layered half-space is smooth, and either fully permeable or impermeable. This dynamic interaction problem is studied by employing a discretization technique and an exact stiffness matrix scheme. Comparisons with existing solutions on rocking vibrations of rigid foundations on elastic and poroelastic media are shown to verify the accuracy of the present scheme. Selected numerical results on rocking compliances of rigid foundations of various shapes and mudmat foundations are presented. In addition, a dynamic interaction problem involving closely spaced foundations under rocking vibrations is also presented to demonstrate the applicability of the present solution scheme.  相似文献   
77.
78.
A systematic method is developed for the dynamic analysis of the structures with sliding isolation which is a highly non-linear dynamic problem. According to the proposed method, a unified motion equation can be adapted for both stick and slip modes of the system. Unlike the traditional methods by which the integration interval has to be chopped into infinitesimal pieces during the transition of sliding and non-sliding modes, the integration interval remains constant throughout the whole process of the dynamic analysis by the proposed method so that accuracy and efficiency in the analysis of the non-linear system can be enhanced to a large extent. Moreover, the proposed method is general enough to be adapted for the analysis of the structures with multiple sliding isolators undergoing independent motion conditions simultaneously. The superiority of the proposed method for the analysis of sliding supported structures is verified by a three-span continuous bridge subjected to harmonic motions and real earthquakes. In addition, the side effect of excessive displacement of the superstructure induced by the sliding isolation is eliminated by replacing one of the roller supports on the abutments with hinge support. Therefore, both reductions in the forces of the substructure and the displacements of the superstructure can be achieved simultaneously. © 1998 John Wiley & Sons, Ltd.  相似文献   
79.
石质构件风化层内力学性能变化规律研究   总被引:2,自引:1,他引:1  
石质构件风化层内力学参数随深度变化的规律是石质古建筑稳定性、耐久性和保护方案研究中重要的内容。本文针对古建筑石质构件风化层不便取样,风化岩样加工易破坏和室内试验只能得出试件整体的力学参数,不能反映风化层内力学参数由表及里逐渐变化的不足,综合运用现场声波测试和室内试验对义乌宋代古月桥(建于1213年)风化条石的抗压强度、弹性模量与深度的关系进行了研究。研究表明,风化层内岩石弹性模量、抗压强度与未风化区域的比值随深度呈较好的负指数关系。  相似文献   
80.
Modelling assumptions, boundary and loading conditions have a significant effect on analytical assessment of ductility supply and demand measures for RC bridges, a structural form which had suffered extensively in recent earthquakes. In recognition of the important role played by analysis in advancing seismic design of bridges, this paper is concerned with assessing the effect of model characteristics and earthquake strong-motion selection on analytical action and deformation seismic design parameters. This is of particular significance when viewed in the light of the large capital investment and problems with the satisfaction of dynamic similitude encountered in physical testing of piers and pier-deck assemblies. The models studied range between simple fixed-base cantilever and inclusion of both soil and deck effects, represented by assemblies of springs in translational and rotational degrees of freedom. Moreover, two sets of earthquake records are used in dynamic analysis, each comprising six records covering low, intermediate and high a/v, where a and v are the peak ground acceleration and velocity, respectively. The two sets differ in the scaling procedure employed to bring them to a common level of severity; the first set is obtained by direct acceleration scaling whilst the second utilizes the concept of velocity spectral intensity. The results from static and dynamic analysis, using advanced material characterization and solution procedures, are assessed and discussed. Subject to the limitations of the study, outlined in the paper, the results indicate that the inclusion of deck stiffness and/or soil representation is essential to avail of accurate seismic response parameters. However, the effect of variations in soil stiffness and/or deck torsional rigidity applied in the analysis is rather small, compared to the inclusion/exclusion of the model feature. Moreover, it is also observed that using acceleration scaling leads to much larger scatter in the results than when velocity spectral intensity scaling is used. Finally, the results from two particular earthquakes, Friuli and El Centro, highlight the peril of using a small number of records selected without due consideration to the relationship between their wave form, predominant periods and spectral shapes on the one hand and the response periods of the structure on the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号