首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   73篇
  国内免费   4篇
测绘学   5篇
地球物理   248篇
地质学   16篇
海洋学   6篇
天文学   1篇
综合类   3篇
自然地理   3篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   4篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1992年   1篇
  1991年   1篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
21.
This paper presents a macroelement formulation for the prediction of the planar dynamic response of inelastic deformable rocking bodies. The formulation is based on a previous macroelement developed by the authors able to describe the cyclic response of inelastic rocking bodies, which takes into account the deformability both along the height of the member, as well as near the rocking end. Modifications of this formulation to account for other motion modes of rocking members during their dynamic response, namely, sliding and upthrow, as well as modifications to account for damping in a uniform manner during the whole motion, including impacts, are introduced. The dynamic response predicted by the macroelement for free-standing rigid and deformable rocking bodies is presented and compared with existing theoretical solutions, and the effect of deformability, damping, inelasticity, and friction on the response is discussed.  相似文献   
22.
Multistorey buildings often have a valuable inventory consisting of objects that their possible damage during an earthquake will cause unacceptable losses. The paper presents a novel, fully performance-based seismic reliability and risk assessment framework for freestanding structural components and contents that can be modelled as rocking rigid blocks. The seismic response of building contents depends on several parameters such as the geometry of the object, the dynamic characteristics of the building and the storey that the object is located. The demand at the storey level is first obtained, and then the response of the contents is calculated using the storey acceleration response history. The demand of the structure is obtained with the aid of a modified version of the Incremental Dynamic Analysis method and subsequently the fragility curves of the rocking building contents are derived for every storey of interest. Different options for fragility assessment are discussed, and the underlying details of the problem are investigated. A simplified approach, where the fragility of the freestanding components and the structure are derived separately, is also presented. The method combines existing fragility curves and thus is suitable for quickly assessing the reliability of a building's inventory, offering sufficient risk estimates.  相似文献   
23.
为研究AP1000核电厂基底隔震性能,设计了缩尺比为1/40的AP1000核电厂模型结构,进行了AP1000核电厂模型基底隔震振动台试验。试验中采用铅芯橡胶隔震支座进行隔震,并选取RG1.60人工波、El Centro波和Kobe波作为地震动输入。本文从加速度响应、楼层加速度反应谱、加速度峰值放大系数、减震率等方面对隔震与非隔震核电厂结构的地震响应特性进行了研究。试验结果表明:隔震能明显减小上部结构水平向加速度响应和加速度反应谱峰值,而在隔震频率处隔震模型加速度反应谱有所增加;隔震模型由于摇摆效应在隔震频率处的水平向楼层加速度反应谱随楼层高度的升高先减小后增大;在三向输入地震动作用下,隔震和非隔震AP1000模型各楼层在竖向基频附近的竖向加速度反应谱较竖向输入的地震动放大较为明显。  相似文献   
24.
高轴压比钢管混凝土墩柱的试验结果对钢管混凝土拱肋具有较大的借鉴意义。为明确大跨度钢管混凝土拱桥的抗震性能指标,研究了高轴比钢管混凝土构件的破坏过程及延性性能。以弯矩作为性能指标将高轴压比钢管混凝土构件的试验破坏过程分为轻微损伤、有限损伤与严重损伤3个阶段,结合钢管混凝土截面性能状态的数值分析,探讨了高轴压比钢管混凝土构件的破坏机理。结果表明:高轴压比钢管混凝土构件具有一定的可用延性;提出了以计算等效屈服弯矩作为抗震性能指标,适当利用延性和实现钢管混凝土拱桥的有限损伤抗震设计,并给出了与有限损伤相关的截面性能状态及参数。研究成果弥补了规范在此方面的不足,可供高烈度地震区大跨度钢管混凝土拱桥抗震设计时参考。  相似文献   
25.
为讨论利用纤维梁柱单元进行钢筋混凝土桥墩地震反应分析的建模方法,分别以4个悬臂式单柱墩和1个双柱墩拟静力加载试验,以及1个悬臂式单柱墩的振动台试验结果为依据,基于OpenSees数值分析平台建立了桥墩的地震反应分析模型。通过改变单元数量,分析了基于力的纤维梁柱单元和基于位移的纤维梁柱单元对桥墩地震反应的模拟精度。结果表明:对悬臂式单柱墩的拟静力和振动台试验,可沿墩高仅建立1个基于力的纤维梁柱单元,并在墩底串联1个考虑纵筋塑性渗透和粘结滑移的转动弹簧单元,即可获得很好的模拟结果。当采用基于位移的纤维梁柱单元时,应沿墩高至少建立2个单元,且塑性铰区至少有1个,才能保证获得较高的模拟精度。对双柱墩拟静力试验,采用基于力的纤维梁柱单元建模,沿每个墩高建立2个单元即可;以基于位移的纤维梁柱单元建模,建议沿每个墩高建立3个单元,且其中2个单元布置在塑性铰区。当数值模型可对静力滞回曲线取得很好的模拟结果后,该模型一般可对动力作用下墩顶最大位移和墩底最大剪力进行较为准确的模拟,但对墩顶残余位移的模拟精度无法保证。  相似文献   
26.
A framework for the generation of bridge-specific fragility curves utilizing the capabilities of machine learning and stripe-based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.  相似文献   
27.
This paper considers the active vibration control of cables and cable/structure systems with an active tendon controlling the axial displacement of the cable anchor point. It is demonstrated that a force feedback based on a collocated force sensor measuring the tension in the cable is feasible and that this control configuration can be associated with control laws with guaranteed stability properties. Experimental results are presented on a cable with small sag and on a cable/structure system. They show that the control algorithm can provide the structure with several percent of active damping and that the parametric resonance does not occur when the natural frequency of the structure is twice that of the cable.  相似文献   
28.
The paper is an attempt to collate field evidence and results from dynamic analysis on possible structural effects of strong vertical ground motion. Observational evidence from three earthquakes are presented and assessed with regard to failure modes of buildings and bridges attributable to high vertical earthquake forces. Analytical results from previous studies for the same structural types are reviewed. These collectively confirm that structural failure may ensue due to direct tension or compression as well as due to the effect of vertical motion on shear and flexural response.  相似文献   
29.
This article presents a new mechanical model for the non‐linear force–displacement response of unreinforced masonry (URM) walls developing a flexural rocking mode including their displacement capacity. The model is based on the plane‐section hypothesis and a constitutive law for the masonry with zero tensile strength and linear elastic behaviour in compression. It is assumed that only the compressed part of the wall contributes to the stiffness of the wall and therefore the model accounts for a softening of the response due the reduction of the effective area. Stress conditions for limit states are proposed that characterise the flexural failure. The new model allows therefore linking local performance levels to global displacement capacities. The limit states criteria describe the behaviour of modern URM walls with cement mortar of normal thickness and clay bricks. The model is validated through comparison of local and global engineering demand parameters with experimental results. It provides good prediction of the effective stiffness, the force capacity and the displacement capacity of URM walls at different limit states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号