首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   73篇
  国内免费   4篇
测绘学   5篇
地球物理   248篇
地质学   16篇
海洋学   6篇
天文学   1篇
综合类   3篇
自然地理   3篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   4篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1992年   1篇
  1991年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
101.
王珏  周叮  刘伟庆  王曙光 《岩土力学》2015,36(1):97-103
基于弹性半空间理论,研究两个相邻明置条形基础的摇摆动力相互作用,将各条形基础与地基的接触面分割成若干个子单元,各单元的位移由基础的刚体位移决定。推导了非对称简谐条形均布载荷作用下弹性地基位移的格林函数,通过分段积分及Cauchy主值积分处理多值广义函数的积分问题。运用所得格林函数求解各单元上的接触力,根据叠加原理得到土与相邻明置条形基础的摇摆动力耦合阻抗函数,详细分析了基础和地基参数对摇摆动力相互作用的影响。计算表明,当两明置条形基础距宽比S/L≤4.0时,应考虑其摇摆动力相互作用效应。所提方法具有计算简便和精度高的特点,对全频段阻抗函数的计算均适用,研究结果为结构抗震设计中考虑土体与多基础的动力相互作用提供了理论依据。  相似文献   
102.
The overturning fragilities of symmetric and asymmetric freestanding blocks, ranging in height from 0.54 to 3.6 m and with height‐to‐width ratios ranging from 2.1 to 6.6, are determined numerically. A probabilistic formulation regularizes the overturning responses when exposed to earthquake‐like random‐vibration waveforms. The peak amplitude of the forcing excitation (peak ground acceleration or PGA) is parameterized as a function of the block size, block shape, overturning probability, and either the PGA normalized peak ground velocity (PGV/PGA), spectral acceleration at 1 s (Sa(1)/PGA), or spectral acceleration at 2 s (Sa(2)/PGA). These later intensity measures are correlated with the duration of the predominant acceleration pulse. The overturning fragilities are compared with shake table experiments using blocks ranging in height from ~0.2 to 1.2 m and with height‐to‐width ratios ranging from ~2 to 10. Excitations utilized in the shake table experiments include recordings of the 1979 Imperial Valley, 1985 Michoacan, 1999 Duzce, 1999 Chi‐Chi, and 2002 Denali Earthquakes along with synthetic waveforms. The overturning fragilities accurately represent the overturning responses of blocks with simple basal contact conditions. Objects with multiple rocking points, such as precariously balanced rocks, are more fragile than predicted. Nondestructive tilting tests are used to account for blocks with complex basal contact conditions, demonstrating that these blocks overturn similarly to more slender blocks with simple contact conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
103.
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non‐linear analysis that complements the linear analysis presented in the past by other investigators. The non‐linear formulation combines the fully non‐linear equations of motion together with the impulse‐momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
104.
In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sliding on a spherical surface is analyzed. The results from seismic performance testing of the bearing are given, and a numerical analysis of a four span continuous girder bridge is performed. The numerical analysis compares the influence of three different bearing arrangement schemes on the structural seismic response, and the results show that the DSSI bearing is effective in increasing the vertical load bearing capacity, reducing the vertical displacement, and controlling the energy dissipation capacity within a certain range.  相似文献   
105.
The capacity of a gravity structure to counter seismically induced overturning can only be estimated with good accuracy using a dynamic analysis of the rotational (rocking) motion involving large displacement theory. Seismic assessment employing quasi‐static analysis can be overly conservative if the reserve capacity of this type of rocking structure to displace without overturning is not taken into account. It was revealed through dynamic testing on a shaking table that the overturning hazards of ground shaking are best represented by the peak displacement demand (PDD) parameter and that the vulnerability to overturning instability decreases with the increasing size of the object when the aspect ratio is held constant. This finding has important implications on the engineering of structures for countering moderate ground shaking in regions of low and moderate seismicity. Experimental data were validated and supplemented by computer simulations that involved generating artificial accelerograms of designated earthquake scenarios and non‐linear time‐history analyses of the overturning motions. Based on these simulations, fragility curves were constructed for estimating the probability of overturning for given levels of PDD and for different specimen dimensions. An expression was developed for estimating the level of PDD required to overturn rectangular objects of given dimensions for 5% probability of exceedance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
106.
In this paper the seismic response of isolated structures supported on bearings with bilinear and trilinear behavior is revisited with dimensional analysis in an effort to better understand the relative significance of the various parameters that control the mechanical behavior of isolation systems. An isolation system that consists of lead rubber bearings or of single concave spherical sliding bearings exhibits bilinear behavior; whereas, when a double concave configuration is used the behavior is trilinear. For the case of bilinear behavior it is well known that the value of the normalized yield displacement is immaterial to the response of the isolated superstructure—or, in mathematical terms, that the response of the bilinear oscillator exhibits complete similarity in the dimensionless yield displacement. Similarly, for the case of trilinear behavior the paper shows that the presence of the intermediate slope is immaterial to the peak response of most isolated structures—a finding that shows the response of the trilinear oscillator exhibits a complete similarity in the difference between the coefficients of friction along the two sliding surfaces as well as in the ratio of the intermediate to the final slope. This finding implies that even when the coefficients of friction of the two sliding surfaces are different, the response of isolated structures for most practical configurations can be computed with confidence by replacing the double concave spherical bearings with single concave spherical bearings with an effective radius of curvature and an effective coefficient of friction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
107.
A rate‐dependent modeling technique is developed for moment resisting steel connections that utilize non‐linear viscous dampers. First, a model of the Maxwell‐type is developed that considers the non‐linear viscous damper and connection flexibility for translational motion. This model is compared with experimental results at several input motion frequencies to validate the results. The model is then extended to represent an exterior steel beam‐to‐column connection using damage‐avoidance design and non‐linear viscous dampers. By including terms to represent structural member and connection flexibility, using appropriate geometric transformations the model can be formulated to give the overall lateral load‐drift structural performance. Validation analysis shows good agreement between experimental observations and the model predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
108.
This paper presents the results of 56 large‐amplitude shake table tests of a 30% scale eight‐storey controlled rocking steel frame. No significant damage or residual deformations were observed after any of the tests. The frame had four possible configurations on the basis of combinations of two higher mode mitigation mechanisms. The first mitigation mechanism was formed by allowing the upper section of the frame to rock, so as to better control the mid‐height overturning moment. The second mitigation mechanism was formed by replacing the conventional first‐storey brace with a self‐centering energy dissipative (SCED) brace, so as to better control the base shear. The mechanisms had little effect during records where higher mode effects were not apparent, but they substantially reduced the shear and overturning moment envelopes, as well as the peak floor accelerations, during more demanding records. The reduction in storey shears led to similarly reduced brace force demands. Although the peak force demands in the columns were not reduced by as much as the frame overturning moments, using an upper rocking joint allowed the column demands to be estimated without the need to assume a lateral force distribution. The tests demonstrated that multiple force‐limiting mechanisms can be used to provide better control of peak seismic forces without excessive increases in drift demands, thus enabling more reliable capacity design. These results are expected to be widely applicable to structures where the peak seismic forces are significantly influenced by higher mode effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
109.
110.
In the design and assessment of structures, the aspects regarding the future performance are gaining increased attention. A wide range of performance measures is covered by ‘sustainability’ to reflect these aspects. There is the need for well established methods for quantifying the metrics of sustainability. In this paper, a framework for assessing the time‐variant sustainability of bridges associated with multiple hazards considering the effects of structural deterioration is presented. The approach accounts for the effects of flood‐induced scour on seismic fragility. Sustainability is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime and number of fatalities, expected energy waste and carbon dioxide emissions, and the expected loss. The proposed approach is illustrated on a reinforced concrete bridge. The effects of corrosion on reinforcement bars and concrete cover spalling are accounted. The seismic fragility curves at different points in time are obtained through nonlinear finite element analyses. The variation of the metrics of sustainability in time is presented. The effects of flood‐induced scour on both seismic fragility and metrics are also investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号