首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   24篇
  国内免费   3篇
地球物理   68篇
地质学   14篇
综合类   1篇
自然地理   17篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1986年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
91.
On sloping sandy agricultural soil sites near Toronto, Canada, summer storms adequate to generate runoff occur frequently, but rill development occurs mainly in spring when snowmelt or rainfall-induced runoff occurs above frozen subsoil. This suggests that on low and moderate slopes on these soils rill initiation is controlled primarily by hydraulic impedance close to the surface, rather than critical hydraulic conditions in runoff. Laboratory flume experiments were carried out on 10 m slopes at 1.5°, 5° and 9° with loamy sand/clay composite soil sample to test this hypothesis. Runoff with hydraulic conditions adequate for rill initiation occurred rapidly in most tests, but on 1.5° and 5° slopes little knickpoint scour or sediment transport occurred before water table development. This coincided with reduced surface soil strength, knickpoint scour and marked increase in sediment discharge, particularly on 5° slopes where increase was 20- to 30-fold. Further increase in sediment discharge occurred when water tables reached the surface. On 9° slopes runoff occurred more quickly, with higher hydraulic values. Significant rill incision and sediment discharge occurred well before water table development, and ultimately reached much higher values than on lower slopes. Results show that soil erodibility can change dramatically over short time periods during storms due to soil moisture conditions, and that the presence of a hydraulic impedance close to the surface which causes a perched water table to develop can strongly influence rill incision and sediment transport. The influence is unlikely to be marked on soils which are very erodible regardless of moisture conditions, or on extremely resistant soils. It will also be limited on very gentle or steep sites, but can be a significant factor in rill development on intermediate slopes.  相似文献   
92.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
93.
Knowledge of soil loss rates by water erosion under given climate, soil, topography, and management conditions is important for establishing soil conservation schemes. In Galicia, a region with Atlantic climatic conditions in Spain, field observations over the last decade indicate that interrill, rill and ephemeral gully erosion may be an important sediment source. The aim of this work was to assess concentrated erosion rates, describe types of rills and ephemeral gullies and determine their origin, evolution and importance as sediment sources. Soil surface state and concentrated flow erosion were surveyed on medium textured soils, developed over basic schists of the Ordenes Complex series (Coruña province, Spain) from 1997 to 2006. Soil surface state was characterized by crust development, tillage features and roughness degree. Soil erosion rate was directly measured in the field. Concentrated flow erosion took place mainly on seedbeds and recently tilled surfaces in late spring and by autumn or early winter. During the study period, erosion rates were highly variable and the following situations could be distinguished: (a) no incision or limited rill incision, i.e. below 2 Mg ha?1 year?1; (b) generalized rill and ephemeral gully incision in the class of mean values between 2·5 and 6·25 Mg ha?1 year?1, this was the most common erosion pattern; and (c) heavy erosion as observed during an extremely wet winter period, between October 2000 and February 2001, with erosion figures that may be about ten orders of magnitude higher, up to 55–60 Mg ha?1 year?1. Therefore, low values of soil losses are dominant, but also large values of rill and ephemeral gully erosion occurred during the study period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
94.
山前洪积扇坡面细沟侵蚀跌坑特征的试验研究   总被引:1,自引:0,他引:1  
跌坑的出现是坡面侵蚀过程中的重要现象,标志着细沟侵蚀正在发育,跌坑的贯穿标志着细沟的形成。采用土槽冲刷模型试验,选取流量、坡度、冲刷时间和坡面形态作为影响跌坑发育的因子结合正交试验调查了不同试验条件下跌坑发育特征及影响因素。结果表明:影响跌坑发育的因素主次为冲刷时间、流量、坡面形态、坡度;跌坑沿坡面连续分布,深度具有波动性,沿坡向下呈现先增大后减小的趋势,最大值一般发育在坡面中部;根据跌坑的发育特征将坡面细沟侵蚀划分为片蚀、细沟雏形、细沟发育和细沟调整四个阶段;坡面细沟侵蚀跌坑深宽积与土壤侵蚀量具有较显著线性关系。研究结果对输油管线水毁及水土流失防治具有一定的参考价值。  相似文献   
95.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
96.
The formation of erosion rills and gullies is a critical step in land surface development, but possibilities to study initial unaffected surface development under natural conditions and with well‐defined initial and boundary conditions are rare. The objective of this study was to characterize rill network development from ’point zero’ in the artificially‐created catchment ‘Hühnerwasser’. To ensure unaffected development, the study was largely restricted to the analysis of remotely‐sensed data. We analyzed a series of photogrammetry‐based digital elevation models (DEMs) for 10 points in time, over a period of five years and beginning with the initial state. The evolving erosion rill network was quantitatively described based on mapping from aerial photographs. DEMs and rill network maps were combined to specifically analyze the development of morphometry for different parts of the network and to characterize energy dissipation and connectivity. The restriction to remote‐sensing data did not allow for analyzing specific processes governing rill network development, nevertheless, two major development phases could be characterized. We observed a phase of growth of the rill network along with variations in drainage patterns during the first two years of development and a subsequent phase of reduction of its area along with comparably stable patterns. Region‐specific analysis of morphometry indicates that, besides effects of changing sediment characteristics and vegetation cover development, locally evolving hydro‐geomorphic feedback cycles influenced this development. Results show an increasing similarity of overall statistical characteristics (e.g. drainage density) for two parts of the catchment, but a persistent influence of initial conditions on specific rill geometry. The observed development towards higher orderliness and increased connectivity is consistent with experiments and concepts on drainage network evolution across scales; however, we did not observe major influences of rill piracy and cross grading or a reduction of energy dissipation with network development. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
97.
Rill network development not only potentially affects hillslope and drainage network evolution, but also causes severe soil degradation. However, the studies on rill network development remain inconclusive. This study aimed to investigate the temporal and spatial development of hillslope rill networks and their characteristics based on rainfall simulations and field observations. A soil pan (10.0 m long × 3.0 m wide × 0.5 m deep) on a 20° slope was applied three successive simulated rains at two intensities of 50 and 100 mm h–1. The field observations were performed on two bare hillslope runoff plots (10.0 m long × 3.0 m wide) at 20°. Three typical erosive natural rainfall events were observed in the field, and rills were measured in detail, similar to the laboratory rainfall simulation. The results indicated that with increases in rainfall events, the rill network morphology varied from incipient formation to the maximum drainage network density. Four rill network development indicators (rill distribution density, distance between rills, rill bifurcation number, and confluence point number) exhibited different changes over time and space. Among the four indicators, the rill bifurcation number was the best indicator for describing rill network development. Rill flow energy increased and decreased cyclically on a slope ranging between ~3 and 4 m. Moreover, rill networks on loessial hillslopes generally evolved into dendritic rather than parallel forms. The development characteristics of the rill network were relatively similar between the laboratory simulation and natural field conditions. Over time, rill erosion control measures become increasingly difficult to implement as the rill network develops. The morphology of eroding rills evolved over time and space, which led to corresponding rill network development. Further study should quantify the impacts of rill network development on soil degradation and land development. © 2020 John Wiley & Sons, Ltd.  相似文献   
98.
Flow resistance equation for rills   总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper, a new flow resistance equation for rill flow was deduced applying dimensional analysis and self‐similarity theory. At first, the incomplete self‐similarity hypothesis was used for establishing the flow velocity distribution whose integration gives the theoretical expression of the Darcy–Weisbach friction factor. Then the deduced theoretical resistance equation was tested by some measurements of flow velocity, water depth, cross section area, wetted perimeter, and bed slope carried out in 106 reaches of some rills shaped on an experimental plot. A relationship between the velocity profile, the channel slope, and the flow Froude number was also established. The analysis showed that the Darcy–Weisbach friction factor can be accurately estimated by the proposed theoretical approach based on a power–velocity profile.  相似文献   
99.
Sediment yields from the rolling hills area of the Loess Plateau in northern China (10000–25000 t km−2 yr−1) are amongst the highest in the world. The sediment is believed to derive from both the deep gullies that dissect the rolling plateau and the steep cultivated fields on the slopes of the mounds between the gullies. However, there are few reliable data for erosion rates on the cultivated fields and it is suspected that current estimates (10000–16000 t km−2 yr−1) based on empirical relationships (derived from erosion plot studies) exceed the true values. This study sought to address the need for more information concerning erosion of the cultivated fields through derivation of erosion rates from measurements of rill volume and caesium-137 (137Cs) inventories for typical fields near the village of Ansai, Shaanxi Province. The derived erosion rates are discussed and compared with estimates based on empirical relationships derived from erosion plot data. Where erosion rate estimates based on both rill volume data and 137Cs inventories are available, they show good agreement in the pattern of downslope variation. Both show a sharp decline in erosion rates at a slope length of c. 50 m. This is tentatively attributed to a change from transport-limited to detachment-limited conditions, where rill incision reaches the undisturbed loess at the base of the plough layer. No such decline is visible in the predictions based on empirical relationships derived from erosion plot data. Further evidence is presented that supports the suggestion that these empirical relationships overestimate erosion rates at slope lengths in excess of c. 50 m. It is tentatively suggested that the rates of soil erosion from sloping cultivated fields in the rolling hills area are more likely to lie in the range 8000–10000 t km−2 yr−1 than in the higher range suggested by the empirical relationships. © 1998 John Wiley & Sons, Ltd.  相似文献   
100.
A review on rill erosion process and its influencing factors   总被引:8,自引:0,他引:8  
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号