首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2277篇
  免费   336篇
  国内免费   477篇
测绘学   8篇
大气科学   1篇
地球物理   450篇
地质学   2074篇
海洋学   115篇
天文学   14篇
综合类   79篇
自然地理   349篇
  2024年   5篇
  2023年   22篇
  2022年   37篇
  2021年   56篇
  2020年   56篇
  2019年   96篇
  2018年   66篇
  2017年   68篇
  2016年   66篇
  2015年   74篇
  2014年   80篇
  2013年   186篇
  2012年   115篇
  2011年   84篇
  2010年   58篇
  2009年   123篇
  2008年   151篇
  2007年   133篇
  2006年   148篇
  2005年   132篇
  2004年   154篇
  2003年   106篇
  2002年   118篇
  2001年   88篇
  2000年   92篇
  1999年   91篇
  1998年   99篇
  1997年   97篇
  1996年   88篇
  1995年   78篇
  1994年   70篇
  1993年   53篇
  1992年   37篇
  1991年   30篇
  1990年   34篇
  1989年   19篇
  1988年   15篇
  1987年   17篇
  1986年   16篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1973年   1篇
  1954年   2篇
排序方式: 共有3090条查询结果,搜索用时 15 毫秒
31.
We present evidence for a decrease in the magnitude of Tharsis-circumferential compressive stress during the Late Hesperian to the Middle Amazonian based on chronologic changes in the predominant style of faulting in southern Amazonis Planitia. Using high-resolution MOLA topography, we identify a population of strike-slip faults that exhibit Middle Amazonian-aged displacements of regional chrono-stratigraphic units. These strike-slip faults are adjacent to an older population of previously documented Late Hesperian-aged thrust faults (wrinkle ridges). Along-strike orientations of these thrust and strike-slip faults reveal the Tharsis-radial stress to be the area's most compressive remote principal stress and that this stress orientation and magnitude persisted throughout the Late Hesperian to the Middle Amazonian. We show that the change in the predominant style of faulting from thrust faulting to strike-slip faulting during this time requires a decrease of the Tharsis-circumferential compressive stress to a magnitude less than lithostatic load, with negligible change in stress orientation.  相似文献   
32.
The NW-trending Bucaramanga fault links, at its southern termination, with the Soapaga and Boyacá faults, which by their NW trend define an ample horsetail structure. As a result of their Neogene reactivation as reverse faults, they bound fault-related anticlines that expose the sedimentary fill of two Early Jurassic rift basins. These sediments exhibit the wedge-like geometry of rift fills related to west-facing normal faults. Their structural setting was controlled further by segmentation of the bounding faults at approximately 10 km intervals, in which each segment is separated by a transverse basement high. Isopach contours and different facies associations suggest these transverse anticlines may have separated depocenters of their adjacent subbasins, which were shaped by a slightly different subsidence history and thereby decoupled. The basin fill of the relatively narrow basin associated with the Soapaga fault is dominated by fanglomeratic successions organized in two coarsening-upward cycles. In the larger basin linked to the Boyacá fault, the sedimentary fill consists of two coarsening-upward sequences that, when fully developed, vary from floodplain to alluvial fan deposits. These Early Jurassic rift fills temporally constrain the evolution of the Bucaramanga fault, which accommodated right-lateral displacement during the early Mesozoic rift event.  相似文献   
33.
To estimate the deep structure of the southern part of the Nojima Fault, southwest Japan without the influence of near-surface structures, we analyzed the Love-wave-type fault-zone trapped waves (LTWs) recorded by a borehole seismometer at 1800 m depth. We examined the polarization, dispersion, and dominant frequency of the wavetrain following the direct S-wave in each seismogram to identify the LTW. We selected eight candidates for typical LTWs from 462 records. Because the duration of the LTW increases with hypocentral distance, we infer that the low velocity fault-zone of the Nojima Fault continues towards the seismogenic depth. In addition, since the duration of the LTW increases nonlinearly with hypocentral distance, we infer that the S-wave velocity of the fault-zone increases with depth. The location of events showing the LTW indicates that the fault-zone dips to the southeast at 75° and continues to a depth of approximately 10 km. We assumed a uniform low-velocity waveguide to estimate the average structure of the fault-zone. We estimated the average width, S-wave velocity, and Qs of the fault-zone by comparing an analytical solution of the LTW with measured data. The average width, S-wave velocity, and Qs of the fault-zone are 150 to 290 m, 2.5 to 3.2 km/s, and 40 to 90, respectively. Hence the fault-zone structure with a larger width and smaller velocity reduction than the fault-zone model estimated by previous surface observation is more suitable to represent the average fault-zone structure of the Nojima fault. The present study also indicated that the shallow layers and/or a shallow fault-zone structure drastically changes the characteristics of the LTW recorded at the surface, and therefore cause a discrepancy in the fault-zone model between the borehole observation and surface observation.  相似文献   
34.
The San Lorenzo area belongs to the Esmeraldas–Tumaco seismic zone where some of the strongest earthquakes of South America occurred during the 20th century. This paper provides evidence for a succession of geomorphic changes characterized by the disruption of the Quaternary drainage network and the reshaping of the Cayapas–Santiago estuary. The rise of the La Boca uplift bordered by the La Boca and San Lorenzo faults is responsible for the southward diversion of the Palabi, Tululbi, Bogotá and Carolina rivers toward the Santiago and Cayapas rivers. The increase of the discharge directed to the Cayapas River generated the change of the channel pattern downstream from the confluence, and the avulsion of a new estuary through the coastal plain. According to the dating of beach ridges the avulsion occurred in the period 3200–2800 BP. This period corresponds also to a faster accretion of the beach ridge margin, interpreted as a response to a small uplift of the shore. The coherency of the three morphologic evidences—diversion of drainage network, avulsion and increase of coastal accretion—suggest a unique morphotectonic event, in relation with the activity of the Esmaraldas–Tumaco seismic zone. The opening of a direct communication through the mangrove margin may have brought favorable conditions for the development of the La Tolita archaeological site after 3000 BP.  相似文献   
35.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   
36.
37.
Abstract:  Recent research has indicated river basin outlets draining linear sections of large, uplifting mountain belts often show a regularity of spacing, transverse to the main structural trend. A morphometric analysis of part of the Ruahine Range, on the North Island was undertaken to test whether drainage regularity may exist in smaller, younger mountain ranges. The ratio, R , of the half-width of the mountain belt, W , and the outlet spacing, S , was used to characterize drainage networks on the eastern side of the range. The spacing ratio for the range of 1.31 is lower than R results from studies of larger mountain belts ( R  = 1.91–2.23). We suggest the cause of this lower ratio is related to eastward migration of the Ruahine drainage divide.  相似文献   
38.
39.
40.
Based on ammonites, Upper Kimmeridgian sediments are first established in the Crimean Mountains. The Kimmeridgian-Tithonian boundary recognizable in a continuous section is placed inside the Dvuyakomaya Formation of uniform largely clayey sediments. Assemblages of Kimmeridgian ammonites Lingulaticeras cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Oloriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian forms (?Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel) are described. A new biostratigraphic scheme proposed for the upper Tithonian-Berriasian of the Crimean Mountains includes the following new biostratigraphic units: the Euvirgalithacoceras cf. tantalus Beds of the upper Kimmeridgian, ?Lingulaticeras efimovi Beds of the lower Tithonian, and Oloriziceras cf. schneidi and Paraulacosphinctes cf. transitorius beds of the upper Tithonian. The middle Tithonian is proposed to consist of the fallauxi and semiforme (presumably) zones. The ammonities found determine the early Kimmeridgian-Berriasian age of the Dvuyakornaya Formation that is most likely in tectonic contact with the underlying Khutoran Formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号