首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7161篇
  免费   1554篇
  国内免费   2327篇
测绘学   89篇
大气科学   325篇
地球物理   1259篇
地质学   7884篇
海洋学   449篇
天文学   11篇
综合类   330篇
自然地理   695篇
  2024年   44篇
  2023年   98篇
  2022年   196篇
  2021年   270篇
  2020年   279篇
  2019年   314篇
  2018年   266篇
  2017年   321篇
  2016年   353篇
  2015年   320篇
  2014年   410篇
  2013年   547篇
  2012年   493篇
  2011年   551篇
  2010年   408篇
  2009年   527篇
  2008年   524篇
  2007年   536篇
  2006年   591篇
  2005年   460篇
  2004年   451篇
  2003年   390篇
  2002年   381篇
  2001年   334篇
  2000年   375篇
  1999年   292篇
  1998年   217篇
  1997年   235篇
  1996年   204篇
  1995年   161篇
  1994年   124篇
  1993年   95篇
  1992年   75篇
  1991年   50篇
  1990年   39篇
  1989年   27篇
  1988年   30篇
  1987年   18篇
  1986年   17篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
271.
合肥盆地钻井地层的同位素测年与地层划分   总被引:3,自引:0,他引:3  
合肥盆地内部中、新界地层大面积被第四系覆盖,其地层的时代与划分主要依赖已有的6口深井地层资料。由于缺乏可靠的化石记录,这6口深井地层时代与划分一直存在着很大的分歧,制约了对该盆地的油气勘探与远景评价。本文利用这6口深井泥岩类岩屑中自生伊利石,在其结晶度分析基础上,进行了K-Ar同位素测年,成功地获得了不同深度上的地层形成时代。据此地层年龄,文中对这6口深井所钻遇的地层进行了重新的划分。  相似文献   
272.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5±0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5±0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   
273.
The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G  相似文献   
274.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   
275.
郝尔宏 《化工矿产地质》2005,27(3):129-138,149
山东省泰安朱家庄自然硫矿床,赋存于鲁西断隆古近纪汶东陆相盆地。自然硫矿层在汶口组二段上亚段,泥质灰岩-含泥灰岩-含云灰岩-石膏岩韵律层中的白云岩-石膏岩层段发育。自然硫以胶态、晶态、土态3种形态产出,可划分为顺层型、准顺层型、斑杂型及不顺层型4大类10余种矿石类型。从矿区去膏化作用普遍、自然硫与石膏-硬石膏分别富集轻-重同位素的特征、油气显示明显及地下水主要径流方向自然硫矿化最强等各种证据,表明该矿属生物后生成因的矿床。  相似文献   
276.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   
277.
278.
This study was carried out in the Cuenca de la Independencia, a semi-arid basin in Central Mexico. The objective is to describe the main features of a groundwater flow regime under natural conditions, based on groundwater discharge manifestations. Information obtained from paleoecological, paleontological, archaeological and historical data suggests that, prior to heavy development (starting in the 1950s), the hydrogeologic regime was characterized by a larger groundwater availability in a more humid and colder climate. Manifestations associated to groundwater discharges are springs, lagoons, wetlands, saline soils, chalcedony deposits, phreatophytes, thermalism, and artesianism. The different types of manifestations and their position in the basin indicate the influence of groundwater flow systems hierarchically nested, forming concentric zones at ground level. The groundwater flow regime corresponds to a classical gravity-induced flow system with generation of local, intermediate and regional patterns. Integrating several types of data to establish the flow geometry and its dynamics has proven a useful tool to increase understanding of the original groundwater regimes. This approach can also be applied in other over-exploited semi-arid basins.  相似文献   
279.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
280.
The Wilhelmine Alpe section near Immenstadt (Allgäu, south Germany), which represents one of the best continuously exposed outcrops within the northern Alpine foreland basin, has been analyzed for magnetostratigraphic and palynostratigraphic signals. The section comprises the marine-to-terrestrial transition from Lower Marine (UMM) to Lower Freshwater Molasse (USM) sediments. Based on the correlation of the local magnetic pattern with the geomagnetic polarity timescale (GPTS) and palynostratigraphic data, an age of about 31 Ma is suggested for the UMM–USM transition in the Wilhelmine Alpe section. A comparison with coeval magnetostratigraphic sections from central and eastern Switzerland indicates that the regression of the UMM sea along the southern margin of the Molasse basin occurred strongly heterochronously between 31.5 and 30 Ma. The heterochroneity is attributed to the deposition of fan-delta and alluvial fan sediments which document that the overall marine conditions during the UMM were accompanied by strong clastic input derived from the rising Alps. This clastic contribution had a much stronger influence on the depositional pattern than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号