全文获取类型
收费全文 | 8964篇 |
免费 | 1628篇 |
国内免费 | 1444篇 |
专业分类
测绘学 | 1416篇 |
大气科学 | 694篇 |
地球物理 | 3822篇 |
地质学 | 3552篇 |
海洋学 | 1262篇 |
天文学 | 78篇 |
综合类 | 463篇 |
自然地理 | 749篇 |
出版年
2024年 | 45篇 |
2023年 | 152篇 |
2022年 | 297篇 |
2021年 | 351篇 |
2020年 | 399篇 |
2019年 | 441篇 |
2018年 | 342篇 |
2017年 | 404篇 |
2016年 | 393篇 |
2015年 | 433篇 |
2014年 | 624篇 |
2013年 | 541篇 |
2012年 | 631篇 |
2011年 | 608篇 |
2010年 | 581篇 |
2009年 | 546篇 |
2008年 | 528篇 |
2007年 | 663篇 |
2006年 | 565篇 |
2005年 | 478篇 |
2004年 | 450篇 |
2003年 | 428篇 |
2002年 | 329篇 |
2001年 | 281篇 |
2000年 | 273篇 |
1999年 | 242篇 |
1998年 | 217篇 |
1997年 | 166篇 |
1996年 | 157篇 |
1995年 | 103篇 |
1994年 | 92篇 |
1993年 | 64篇 |
1992年 | 58篇 |
1991年 | 29篇 |
1990年 | 28篇 |
1989年 | 22篇 |
1988年 | 18篇 |
1987年 | 19篇 |
1986年 | 7篇 |
1985年 | 7篇 |
1984年 | 12篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1954年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
通过试验,研究自主研发的压电主动杆件在单层网壳结构中的主动智能控制问题.利用集传感器、作动器和承受荷载等功能于一体的压电主动杆件,对网壳结构的地震响应振动实施主动智能控制.结果表明,这种压电主动构件作为网壳结构的内在控制源,可以有效地控制网壳结构的地震响应,起到抑制网壳振动的作用. 相似文献
992.
深水悬臂桥墩动力特性及地震响应分析 总被引:1,自引:0,他引:1
利用ADINA中的势流体单元对一已建成的深水高墩建模,桥梁上部结构对桥墩的影响以墩顶集中质量的形式体现,分别对不同水深条件下桥墩-水体系的动力特性和地震动响应进行了系统的求解;为了检验Morison方程在深水桥墩动力分析中的有效性,将基于忽略速度力项的Morison方程的计算结果与基于势流体的结果进行了比较。研究结果表明:①水体对结构的自振频率折减影响随着水深的增大而增大,基于Morison方程得到的结构频率的影响大于势流体模型;②水深对墩顶位移的影响比加速度明显,墩底剪力受水深的影响大于其对墩底弯矩的影响;③考虑上部集中质量的影响,结构的响应会不同程度地减小;④相对于势流模型,忽略速度项的Morison方程所得到的结构动力反应略显保守。 相似文献
993.
大跨径钢管混凝土拱桥减震控制装置参数的研究 总被引:1,自引:0,他引:1
大跨度桥梁结构的减震控制研究对于桥梁结构的抗震安全具有重要意义。本文以主跨368m的茅草街大桥为研究对象,基于ANSYS建立了该桥的三维有限元模型,并采用子空间迭代法分析了该桥的动力特性。在此基础上进行了大跨度钢管混凝土拱桥的地震响应及减震控制研究,重点进行了弹性连接装置和粘滞阻尼器减震效果的参数敏感性分析,并对比分析了不同位置布设减震装置时的效果。结果表明,纵飘振型对该桥肋纵向相对位移的贡献最大;弹性连接装置和阻尼器均能有效减小地震作用下该桥的肋梁纵向相对位移;综合考虑各关键部位的地震响应时,同时采用两类减震装置并将其分散布置时的减震效果最佳。结论可供大跨度中承式钢管混凝土系杆拱桥的抗震设计参考。 相似文献
994.
995.
996.
湖泊蒸发对气候变化非常敏感,是水文循环响应气候变化的指示因子,因此研究湖泊蒸发的控制因素,对于理解区域水文循环有重要意义.本文利用太湖中尺度涡度通量网避风港站观测数据校正JRA-55再分析资料,驱动CLM4.0-LISSS模型,并利用2012-2017年涡度相关通量数据和湖表面温度数据检验模型模拟蒸发结果,验证了该模型在太湖的适用性;估算了1958-2017年间太湖的湖面蒸发量,并利用Manner-Kendall趋势检验分析了湖面蒸发的变化趋势,寻找太湖实际蒸发的年际变化的主控因子.结果如下:校正后的JRA-55再分析资料模拟的太湖蒸发与观测值之间存在季节偏差,但是季节偏差在年尺度上相互抵消,再分析资料可用于年际尺度太湖蒸发变化的模拟;1958-2017年间太湖蒸发量以1977年为界,先下降(-3.6 mm/a),后增加(2.3 mm/a);多元逐步回归结果表明,向下的短波辐射是太湖1958-2017年间太湖蒸发变化的主控因子,向下的长波辐射、气温、比湿也对湖泊蒸发年际变化有一定影响,但是风速对蒸发量的年际变化影响不大. 相似文献
997.
Exposed roots were used to estimate soil and bedrock erosion on the cut slopes of a 45-year-old road constructed in granitic soils of the Idaho Batholith. The original roadcut surface was defined by projecting a straight line from the toe of the cut past the end of the exposed root to the intersection of a straight line projected along the surface of the hillslope. A cross-sectioning technique was then used to determine erosion to the present roadcut surface. A total of 41 exposed root sites were used to estimate erosion on a 1350 m-long section of road. Average erosion was 1·0 and 1·1 cm/year for soil and bedrock respectively. Buttressing by tree roots caused lower erosion rates for soil as compared to bedrock. Both soil and bedrock erosion rates showed statistically significant correlations with the gradients of the original cut slope. The bedrock erosion data provide a reasonable estimate of the disintegration rate of exposed granitic bedrock exhibiting the weathering and fracturing properties common to this area. The road is located in a study watershed where long-term sediment yield data are available. Sediment data from adjacent study watersheds with no roads were compared to sediment data from the roaded watershed to estimate the long-term increase in sediment yield caused by the road. The increase amounts to about 2·4 m3/year. This figure, compared to the average annual on-site road erosion, provides an erosion to sediment delivery ratio of less than 10 per cent. Based on study results, road construction and maintenance practices are suggested for helping reduce roadcut erosion. 相似文献
998.
Arthur Rodgers Hrvoje Tkalcic David McCallen Shawn Larsen Catherine Snelson 《Pure and Applied Geophysics》2006,163(1):55-80
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions
and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage
of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was
measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios
(HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman
Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching
a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and
2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response
is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency
of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the
amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and
1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling
results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity
structure. 相似文献
999.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
1000.
The static, cyclic, and dynamic response of a massive caisson foundation embedded in nonlinear layered or inhomogeneous soil and loaded at its top is investigated. The caisson is supported against horizontal displacement and rotation by four types of inelastic springs and dashpots, described with the BWGG model that was developed in the preceding companion paper [Gerolymos N, Gazetas G. Development of winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities. Soil Dyn Earthq Eng, submitted companion paper]. The prediction of the model is satisfactorily compared with results from 3D-finite element analysis. Some experimental corroboration of the method is provided with the help of a 1/3-scale lateral load test that had been conducted in the field by EPRI. An illustrative example of a caisson embedded in linearly-inhomogeneous clay and subjected to static and dynamic loading is analysed. Characteristic results are presented highlighting the role of soil inelasticity and its interplay with the two dominant interface nonlinearities: separation (gapping) of the caisson shaft from the surrounding soil, and uplifting of the base from the underlying soil. 相似文献