Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coefficient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the principal source for West-East Gas Development Project. In order to correctly evaluate the elastic-plastic deformation of rocks caused by the pressure decline during production, some researches, as the experiment on reservoir sensitivity to stress of gas filed with abnormal high pressure, are made. By testing the rock mechanic properties, porosities and permeabilities at different temperature and pressure of 342 core samples from 5 wells in this area, the variations of petro-physical properties at changing pressure are analyzed, and the applicable inspection relationship is concluded. The average productivity curve with the reservoir sensitivity to stress is plotted on the basis of the research, integrated with the field-wide productivity equation. The knowledge lays a foundation for the gas well productivity evaluation in the field and the gas field development plan, and provides effective techniques and measures for basic research on the development of similar gas fields. 相似文献
This paper explored and discussed the cognition of informatization geomatics innovative talents cultivating laws and the basic principles and teaching system of informatization experiment teaching in the informatization experimental teaching innovation. 相似文献
A series of experiments were done to reveal the overtopping breaching process of non-cohesive and cohesive levees in a U-bend flume. The flood hydrograph and breaching geometry were measured and analyzed in detail. The results show that the levee breaching processes can be briefly divided into four stages: slope erosion, longitudinal headward gully-cutting, lateral erosion, and relative stabilization. For non-cohesive levees, non-symmetrical lateral development of the breach occurs throughout the four stages, and the final non-symmetrical coefficient is approximately 2.2–2.6. Larger flow discharge or higher water level can accelerate the breaching process, while coarser sands tend to accelerate the process initially but depress the process at the end. The fluvial erosion rate of a non-cohesive breach shows a power-function relation with the excess wall shear stress. For cohesive levees, a plateau forms in the breach partially blocking the flow in the first two stages. The breach flow is approximately perpendicular to the levee body, and, thus, the erosion rates of the two breach sides are almost the same. Non-symmetrical lateral development mainly occurs in the third stage when the deep gully forms. The final non-symmetrical coefficient is approximately 2.7–3.3. It is expected that these findings can provide a valuable experimental dataset and a theoretical basis for breach closure and flood alleviation. 相似文献
We report on a marine electromagnetic (EM) survey across two portions of the New Jersey continental margin that have been previously shown to contain buried paleo-channels. The EM method used provides bulk porosity estimates to depths of around 20 m below the seafloor and is thus able to place porosity constraints on the nature of the channel infill and the contrast in physical properties across the channel boundaries. Our data show that a key condition for the channels to have an electrical signature is that they incise an underlying regional unconformity, R, thought to represent a subaerially eroded surface, exposed during the late Wisconsinan glaciation. Channels that cut R are seen through increases in apparent porosity. Another seismically imaged channel sequence, which lies within the outer-shelf sediment wedge sequence above R, does not have an electrical signature, indicating that the sediments above and below the channel boundaries have similar physical properties. 相似文献