首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   22篇
  国内免费   7篇
地球物理   71篇
地质学   21篇
海洋学   3篇
天文学   3篇
综合类   4篇
自然地理   25篇
  2023年   1篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   3篇
  2014年   9篇
  2013年   15篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2004年   5篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
71.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
72.
73.
The purposes of this study are to identify the bias of applying the analysis of a log–log plot of baseflow and to derive an equation to describe successive regional mean baseflow. The function ?dQ/dt = a Qb has been used to describe baseflow in many studies that obtain the values of a and b from the log–log plot. According to analysis in this study, the value of 1 can be assigned to b in two boundary conditions, but the parameter a is proved to be related to the depth of water table and starting time of recession and thus different values of a may be found for different recession events. This paper points out that no single regression line can be obtained by plotting all baseflow data on a log–log diagram. Instead, there should be parallel lines, and each for a recession event. It implies that no single set of parameters a and b can be applied to predict baseflow. Thus, a new equation describing the relationship between three successive mean baseflows was derived in this study. The bias in the analysis of the log–log plot and the ability of the derived equation to predict baseflow were verified for five watersheds in Taiwan. Results indicate that the formula of mean baseflow prediction can provide reasonable estimates of flows with a leading time of 6 days. Furthermore, stream flows of the Tonkawa creek watershed in USA were used to verify that using average flows can result in better predictions than using instantaneous flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
74.
水量统一调度以来黄河内蒙古河段耗水量分析   总被引:1,自引:0,他引:1  
黄河水量统一调度始于1999年3月,本次对1999-2011年黄河内蒙古河段引水和退水的年内、年际变化以及引排比关系进行了分析;利用遥感图片,核查了黄河干流石嘴山—头道拐河段的引退水口门;分别采用引退水法和水量平衡法计算了黄河内蒙古河段的引黄耗水量。结果表明:该研究时段内蒙古河套灌区退水量与引水量的比值平均为0.16,呈现逐年增大的趋势,引退水关系比较好,存在"大引大排"现象;引退水法年平均耗水量为75.44亿m3,年际变化相对比较平缓;水量平衡法年平均耗水量为56.72亿m3,年际变化非常明显;两种方法耗水量差别明显的原因之一是颁证引退水口门与实际引退水口门数量不相同。  相似文献   
75.
76.
A procedure to simulate karstic aquifers is presented. It is based on a simulation of spring discharge using precipitation and, where necessary, temperature as input data. The karstic aquifer system is considered to be divided into three zones: the surface zone, the unsaturated zone (UZ) and the saturated zone (SZ). Each of these is described by a transfer function that determines the water supplied from the overlying zone. Water loss through evapotranspiration is calculated empirically and subtracted from the total precipitation in order to obtain the effective infiltration into the UZ. The transfer function characterizing the UZ can be expressed as a convolution function. The UZ acts as a buffer, delaying effective infiltration into the SZ. Water discharge from the SZ is described by the recession function of the spring, and this becomes the transfer function that characterizes the emergence of water from the SZ. The model permits the simulation of the influence of pumped abstractions from the system by a simple modification of the transfer functions involved. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
77.
We attempted to clarify the runoff characteristics of a permafrost watershed in the southern mountainous region of eastern Siberia using hydrological and meteorological data obtained by the State Hydrological Institute in Russia from 1976 to 1985. We analysed seasonal changes in the direct runoff ratio and recession gradient during the permafrost thawing period. Thawing depth began to increase from the beginning of May and continued to increase until the end of September, exceeding 150 cm. Annual precipitation and discharge were in the range 525–649 mm and 205–391 mm respectively. The sum of the annual evapotranspiration and changes in water storage ranged from 235 to 365 mm. The mean daily evapotranspiration in June, July, August and September was 1·5 mm day?1, 1·7 mm day?1, 1·5 mm day?1, and 0·5 mm day?1 respectively. The direct runoff ratio was highest in June, decreasing from 0·8 in June to 0·2 in September. The recession gradient also decreased from June to September. Since the frozen soil functioned as an impermeable layer, the soil water storage capacity in the thawing part of the soil, the depth of which changed over time, controlled the runoff characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
78.
In an earlier paper (Bako and Hunt, 1988), a method for the derivation of the baseflow recession constant (K) using one-way analysis of variance was presented. This paper presents the results of the field application of this method. The K values obtained by using the numerical equation of Bako and Hunt (1988) were inserted in the exponential recession equation (Barnes, 1939) to generate a series of baseflows. The fit between the model and the historical flows was found to be greater than 99 per cent thus confirming the applicability of the numerical method under field situation. The main advantage of this technique is its amenability for computerized application thus making it relatively faster than any of the existing techniques of fitting the recession equation. For this reason, the subjectivity inherent in most of the existing techniques is eliminated and a measure of procedural consistency can be guaranteed. Consistency is necessary if intercatchment comparison or interpolation of K values is to be meaningful.  相似文献   
79.
Glaciers in the southern province of the Southern Volcanic Zone (SVZ) of Chile (37–46°S) have experienced significant frontal retreats and area losses in recent decades which have been primarily triggered by tropospheric warming and precipitation decrease. The resulting altitudinal increase of the Equilibrium Line Altitude or ELA of glaciers has lead to varied responses to climate, although the predominant volcanic stratocone morphologies prevent drastic changes in their Accumulation Area Ratios or AAR. Superimposed on climate changes however, glacier variations have been influenced by frequent eruptive activity. Explosive eruptions of ice capped volcanoes have the strongest potential to destroy glaciers, with the most intense activity in historical times being recorded at Nevados de Chillán, Villarrica and Hudson. The total glacier area located on top of the 26 active volcanoes in the study area is ca. 500 km2. Glacier areal reductions ranged from a minimum of −0.07 km2 a −1 at Mentolat, a volcano with one of the smallest ice caps, up to a maximum of −1.16 km2 a −1 at Volcán Hudson. Extreme and contrasting glacier–volcano interactions are summarised with the cases ranging from the abnormal ice frontal advances at Michinmahuida, following the Chaitén eruption in 2008, to the rapid melting of the Hudson intracaldera ice following its plinian eruption of 1991. The net effect of climate changes and volcanic activity are negative mass balances, ice thinning and glacier area shrinkage. This paper summarizes the glacier changes on selected volcanoes within the region, and discusses climatic versus volcanic induced changes. This is crucial in a volcanic country like Chile due to the hazards imposed by lahars and other volcanic processes.  相似文献   
80.
The role of post-Little Ice Age (LIA) Neoglacial retreat on landslide activity is investigated in 19 alpine basins along the upper Lillooet River Valley, British Columbia. We examine how Neoglacial scouring and glacial recession have modified hillslope form and slope stability, and construct a decision-making flowchart to identify landslide hazards associated with glacial retreat. This work is based on field mapping, GIS analysis, statistical associations between landslides and terrain attributes, and a comparison between Neoglaciated and non-Neoglaciated terrain within each basin.The bedrock landslide response to glacial retreat varies appreciably according to lithology and the extent of glacial scour below the LIA trimline. Valleys carved in weak Quaternary volcanics show significant erosional oversteepening and contain deep-seated slope movement features, active rock fall, rock slides, and rock avalanches near glacial trimlines. Basins in stronger granitic rock rarely show increased bedrock instability resulting from post-LIA retreat, except for shallow-seated rock slides along some trimlines and failures on previously unstable slopes. In surficial materials, landslides associated with post-LIA retreat originate in till or colluvium, as debris slides or debris avalanches, and are concentrated along lateral moraines or glacial trimlines.Significant spatial association was also observed between recent catastrophic failures, gravitational slope deformation, and slopes that were oversteepened then debuttressed by glacial erosion. Eight out of nine catastrophic rock slope failures occurred just above glacial trimlines and all occurred in areas with a previous history of deep-seated gravitational slope movement, implying that this type of deformation is a precursor to catastrophic detachment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号