首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10198篇
  免费   2837篇
  国内免费   1003篇
测绘学   1044篇
大气科学   514篇
地球物理   5515篇
地质学   4011篇
海洋学   891篇
天文学   635篇
综合类   519篇
自然地理   909篇
  2024年   17篇
  2023年   54篇
  2022年   148篇
  2021年   301篇
  2020年   346篇
  2019年   536篇
  2018年   650篇
  2017年   736篇
  2016年   756篇
  2015年   704篇
  2014年   772篇
  2013年   1145篇
  2012年   787篇
  2011年   743篇
  2010年   616篇
  2009年   528篇
  2008年   679篇
  2007年   578篇
  2006年   550篇
  2005年   499篇
  2004年   427篇
  2003年   409篇
  2002年   366篇
  2001年   274篇
  2000年   302篇
  1999年   199篇
  1998年   178篇
  1997年   154篇
  1996年   113篇
  1995年   89篇
  1994年   81篇
  1993年   69篇
  1992年   46篇
  1991年   40篇
  1990年   29篇
  1989年   23篇
  1988年   18篇
  1987年   18篇
  1986年   10篇
  1985年   12篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   3篇
  1973年   1篇
  1971年   2篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
This paper presents two dinoflagellate cyst records from the south‐western shelf of the Black Sea. A new site, MAR05‐13, from the Sakarya shelf is described and placed into context with site MAR02‐45, ~250 km distant on the Thracian shelf. The records provide a centennial resolution of surface water conditions in the Holocene. Analysis of the data suggests that the surface salinity of the south‐western shelf increased in a gradual and progressive manner. In the period ~11 000–9000 cal a BP the assemblages suggest surface‐water salinities between 7–13 psu. The initial arrival of euryhaline species, ~8100 cal a BP, is linked to the reconnection of the Black Sea and Marmara Sea. The suggested surface water changes related to the reconnection took approximately 1000 years. Following this initial change in assemblages, a further increase in the number of euryhaline species is noted between 5000 and 4000 cal a BP. This is linked to the establishment of more saline surface‐water conditions, close to present‐day values. The record for MAR05‐13 highlights the complexity of the changes in cyst assemblages during the mid‐Holocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
This discussion paper, by a Working Group of INTIMATE (Integration of ice‐core, marine and terrestrial records) and the Subcommision on Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS), considers the prospects for a formal subdivision of the Holocene Series/Epoch. Although previous attempts to subdivide the Holocene have proved inconclusive, recent developments in Quaternary stratigraphy, notably the definition of the Pleistocene–Holocene boundary and the emergence of formal subdivisions of the Pleistocene Series/Epoch, mean that it may be timely to revisit this matter. The Quaternary literature reveals a widespread but variable informal usage of a tripartite division of the Holocene (‘early’, ‘middle’ or ‘mid’, and ‘late’), and we argue that this de facto subdivision should now be formalized to ensure consistency in stratigraphic terminology. We propose an Early–Middle Holocene Boundary at 8200 a BP and a Middle–Late Holocene Boundary at 4200 a BP, each of which is linked to a Global Stratotype Section and Point (GSSP). Should the proposal find a broad measure of support from the Quaternary community, a submission will be made to the International Union of Geological Sciences (IUGS), via the SQS and the ICS, for formal ratification of this subdivision of the Holocene Series/Epoch. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
993.
Compared to hydrograph recession analysis, which is widely applied in engineering hydrology, the quantitative assessment of stream salinity with time (i.e. the salinograph) has received significantly less attention. In particular, while in many previous hydrological studies an inverse relationship between hydrograph and salinograph responses is apparent, the concept of salinity accession (the inversely related salinity counterpart to hydrograph recession) has not been introduced nor quantitatively evaluated in previous literature. In this study, we conduct a mathematical analysis of salinograph accession, and determine new quantitative relationships between salinity accession and hydrograph recession parameters. An equation is formulated that reproduces the general trend in salinity accession. A salinity accession parameter kc is then introduced and is shown to be the ratio of direct runoff to total stream flow recession parameters: kr/k. The groundwater recession parameter kg was estimated using a simple and rapid method that uses both salinograph and hydrograph data. Salinity accession type‐curves illustrate that under certain conditions, the relative steepness of individual salinographs is dependent upon the ratio of groundwater salinity to direct runoff salinity: Cg/Cr. The salinity accession algorithms are applied to two contrasting field settings: Scott Creek, South Australia and Sandy Creek, northern Queensland, Australia. It was found that kg > k during periods of obvious stream flow recession, for the events analysed. Salinograph accession behaviour was fairly similar for both sites, despite contrasting environments. Using assumed end‐member salinities for groundwater and direct runoff based upon field observations, the behaviour of kc from the Scott Creek site was approximately reproduced by varying the initial groundwater to runoff flow ratio: Qg0/Qr0, within reasonable parameter ranges. The use of salinograph information when used in addition to standard hydrograph analyses provided useful information on recession characteristics of stream components. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
994.
A geochemical and end‐member mixing analysis (EMMA) is undertaken in Devil Canyon catchment, located in southern California, to further understanding of watershed behaviour and source water contributions after an acute and extensive wildfire. Physical and chemical transformations in post‐fire watersheds are known to increase overland flow and decrease infiltration, mainly due to formation of a hydrophobic layer at, or near, the soil surface. However, less is known about subsurface flow response in burned watersheds. The current study incorporates EMMA to evaluate and quantify source water contributions before, and after, a catchment affected by wildfires in southern California during the fall of 2003. Pre‐ and post‐fire stream water data were available at several sampling sites within the catchment, allowing the identification of contributing water sources at varying spatial scales. Proposed end‐member observations (groundwater, overland flow, shallow subsurface flow) were also collected to constrain and develop the catchment mixing model. Post‐fire source water changes are more evident in the smaller and faster responding sub‐basin (interior sampling point). Early post‐fire storm events are dominated by overland flow with no significant soil water or groundwater flow contribution. Inter‐storm streamwater in this smaller basin shows an increase in groundwater and a decrease in soil water. In the larger, baseflow‐dominated system, source water components appear less affected by fire. A slight increase in lateral flow is observed with only a slight decrease in baseflow. Changes in the post‐fire flow regimes affect nutrient loading and chemical response of the basin. Relatively rapid recovery of the chaparral ecosystem is evidenced, with active re‐growth and evapotranspiration evidenced by the fourth post‐fire rainy season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
995.
Much of the nonlinearity and uncertainty regarding the flood process is because hydrologic data required for estimation are often tremendously difficult to obtain. This study employed a back‐propagation network (BPN) as the main structure in flood forecasting to learn and to demonstrate the sophisticated nonlinear mapping relationship. However, a deterministic BPN model implies high uncertainty and poor consistency for verification work even when the learning performance is satisfactory for flood forecasting. Therefore, a novel procedure was proposed in this investigation which integrates linear transfer function (LTF) and self‐organizing map (SOM) to efficiently determine the intervals of weights and biases of a flood forecasting neural network to avoid the above problems. A SOM network with classification ability was applied to the solutions and parameters of the BPN model in the learning stage, to classify the network parameter rules and to obtain the winning parameters. The outcomes from the previous stage were then used as the ranges of the parameters in the recall stage. Finally, a case study was carried out in Wu‐Shi basin to demonstrate the effectiveness of the proposal. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
996.
A fuzzy dynamic flood routing model (FDFRM) for natural channels is presented, wherein the flood wave can be approximated to a monoclinal wave. This study is based on modification of an earlier published work by the same authors, where the nature of the wave was of gravity type. Momentum equation of the dynamic wave model is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. Hence, the FDFRM gets rid of the assumptions associated with the momentum equation. Also, it overcomes the necessity of calculating friction slope (Sf) in flood routing and hence the associated uncertainties are eliminated. The fuzzy rule based model is developed on an equation for wave velocity, which is obtained in terms of discontinuities in the gradient of flow parameters. The channel reach is divided into a number of approximately uniform sub‐reaches. Training set required for development of the fuzzy rule based model for each sub‐reach is obtained from discharge‐area relationship at its mean section. For highly heterogeneous sub‐reaches, optimized fuzzy rule based models are obtained by means of a neuro‐fuzzy algorithm. For demonstration, the FDFRM is applied to flood routing problems in a fictitious channel with single uniform reach, in a fictitious channel with two uniform sub‐reaches and also in a natural channel with a number of approximately uniform sub‐reaches. It is observed that in cases of the fictitious channels, the FDFRM outputs match well with those of an implicit numerical model (INM), which solves the dynamic wave equations using an implicit numerical scheme. For the natural channel, the FDFRM outputs are comparable to those of the HEC‐RAS model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
997.
刘利  韩春好  唐波 《天文学进展》2007,25(3):279-283
该文介绍了利用地球同步卫星定位系统进行双向定时的基本原理,采用北京和乌鲁木齐两站的试验数据进行了计算分析,发现双向定时结果明显存在周期性变化,并且两地结果随地方时的变化趋势基本一致。谱分析表明:两站的主要周期谱基本一致,都比较明显地存在近周日和近半日变化。这种周期性变化可能主要由电离层延迟随地方时的变化引起。  相似文献   
998.
结合小波分析和熵的基本理论,在分析国际原子时TAI的基础上,提出了基于小波熵的时间尺度算法.通过对原子钟信号进行多尺度分解,根据能量划分,综合所有尺度的小波系数得到小波熵,然后利用小波熵对原子钟进行加权.最后,通过某实验室的实测数据对算法进行了检验,结果表明:这种方法能够综合各原子钟信号在不同尺度上的频率波动特征,明显提高了时间尺度的稳定度.  相似文献   
999.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
1000.
A model describing the three‐dimensional matrix flow along a slope with rock fragments or impermeable blocks was developed. The model was combined with modified Picard's iteration to ensure mass conservation in the unsaturated flow. We found that rock fragments obstruct water flow along the slope. The groundwater table must be raised to provide a sufficient pore water pressure gradient to facilitate water flow, but higher pore water pressure may induce slope failure. We also conducted a bench‐scale laboratory flume experiment to examine the effects of impermeable blocks on downstream seepage flow. In addition, a numerical experiment was conducted to examine how different arrangements of impermeable blocks affect downstream seepage flow and pore water pressure. This research demonstrated that the hydraulic phenomena were affected when impermeable blocks were present, and pore water pressure increased as the position of impermeable blocks was lowered. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号