首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14911篇
  免费   3533篇
  国内免费   1619篇
测绘学   2534篇
大气科学   1023篇
地球物理   6199篇
地质学   5905篇
海洋学   1504篇
天文学   712篇
综合类   824篇
自然地理   1362篇
  2024年   22篇
  2023年   108篇
  2022年   282篇
  2021年   483篇
  2020年   520篇
  2019年   758篇
  2018年   787篇
  2017年   950篇
  2016年   952篇
  2015年   884篇
  2014年   1058篇
  2013年   1422篇
  2012年   1158篇
  2011年   1078篇
  2010年   916篇
  2009年   800篇
  2008年   930篇
  2007年   932篇
  2006年   876篇
  2005年   754篇
  2004年   666篇
  2003年   638篇
  2002年   525篇
  2001年   432篇
  2000年   451篇
  1999年   311篇
  1998年   275篇
  1997年   211篇
  1996年   187篇
  1995年   139篇
  1994年   125篇
  1993年   92篇
  1992年   78篇
  1991年   53篇
  1990年   45篇
  1989年   32篇
  1988年   28篇
  1987年   29篇
  1986年   12篇
  1985年   12篇
  1984年   16篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1976年   3篇
  1973年   1篇
  1971年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
71.
设计和研制了一种适用于大专院校示范教学实验的虚拟仪器。该虚拟仪器以GPS接收模块输出的1PPS(秒脉冲)信号为基准,测量无源石英晶体振荡器频率,同时利用GPS信号实现了仪器的时间同步与测距功能。从硬件和软件两方面描述了该虚拟仪器的构成及设计方法,主要介绍和讨论基于GPS和虚拟仪器技术实现多功能测量的途径。  相似文献   
72.
主要介绍卫星天线控制系统中天线旋转定位控制的软硬件设计和实现。该部分的主要功能是:接收红外遥控器的信号;检测前面板上的按键信号;检测传感器反馈的信号;根据所得信号作出相应的动作。  相似文献   
73.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
74.
本文介绍了对时序垂直角观测值进行谱分析的方法和所得到的结论。使以往对于大气折射影响及其变化规律的定性认识得以定量化。  相似文献   
75.
Since the discovery that dim gamma-ray bursts last longer on average than bright ones (time dilation) the cosmological origin of this effect has been contested by various researchers. I discuss the current status of this issue and conclude that current models for a non-cosmological time dilation only explain part of the observed phenomenon, and even then betray themselves by distinct signatures in the data. As those signatures have not been seen, the cosmological origin remains the favoured explanation of the time dilation.  相似文献   
76.
Results of a single group participating in an international experiment are analyzed. The experiment served to verify computational predictions of the ground-motion variations due to near-surface geological effects at a site established for that purpose by the California Department of Conservation. Based on an acceleration record at a rock location, and geotechnical model of medium, records at the other locations of a nearby sedimentary deposit were predicted. A 2-D finite-difference sensitivity analysis suggested that the lateral wave-propagation effects are negligibly small, and locally 1-D computations are sufficient for the present site. Those computations are compared with observations not available to the authors during the blind prediction. Peak accelerations, peak velocities and RMS accelerations were predicted with errors less than 159%, 114% and 62%, respectively. Maxima of the response spectra were fitted within a factor of 2. The predicted and observed Husid's plots (i.e., the normalized cumulative plots of the acceleration squared) have the correlation coefficients 0.98. The detected misfits do not show any simple relation to the instrument location, component, frequency, or time.  相似文献   
77.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
78.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
79.
Evolution of sedimentary systems at large temporal and spatial scales cannot be scaled down to laboratory dimensions by conventional hydraulic Froude scaling. Therefore, many researchers question the validity of experiments aiming to simulate this evolution. Yet, it has been shown that laboratory experiments yield stratigraphic responses to allocyclic forcing that are remarkably similar to those in real‐world prototypes, hinting at scale independency with strong dependence on boundary conditions but weak dependence on the actual sediment transport dynamics. This paper addresses the dilemma by contrasting sediment transport rules that apply in the laboratory with those that apply in real‐world geological systems. It is demonstrated that the generation of two‐dimensional stratigraphy in a flume can be simulated numerically by the non‐linear diffusion equation. Sediment transport theory is used to demonstrate that only suspension‐dominated meandering rivers should be simulated with linear diffusion. With increasing grain‐size (coarse sand to gravel) and shallowness of river systems, the prediction of long‐term transport must be simulated by non‐linear, slope‐dependent diffusion to allow for increasing transport rates and thus change in stratigraphic style. To point out these differences in stratigraphic style, three stages in infill of accommodation have been defined here: (i) a start‐up stage, when the system is prograding to base level (e.g. the shelf edge) with no sediment flux beyond the base‐level point; (ii) a fill‐up stage, when the system is further aggrading while progressively more sediment is bypassing base level with the progression of the infill; and (iii) a keep‐up stage, when more than 90% of the input is bypassing the base level and less than 10% is used for filling the accommodation. By plotting the rate of change in flux for various degrees of non‐linearity (varying the exponent in the diffusion equation) it was found that the error between model and real‐world prototype is largest for the suspension‐dominated prototypes, although never more than 30% and only at the beginning of the fill‐up stage. The error reduces to only 10% for the non‐linear sandy‐gravelly and gravelly systems. These results are very encouraging and open up ways to calibrate numerical models of sedimentary system evolution by such experiments.  相似文献   
80.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号