首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   441篇
  国内免费   293篇
测绘学   89篇
大气科学   36篇
地球物理   1361篇
地质学   857篇
海洋学   377篇
天文学   18篇
综合类   93篇
自然地理   861篇
  2024年   18篇
  2023年   32篇
  2022年   54篇
  2021年   111篇
  2020年   143篇
  2019年   132篇
  2018年   121篇
  2017年   121篇
  2016年   117篇
  2015年   127篇
  2014年   132篇
  2013年   206篇
  2012年   119篇
  2011年   149篇
  2010年   116篇
  2009年   169篇
  2008年   172篇
  2007年   169篇
  2006年   195篇
  2005年   162篇
  2004年   137篇
  2003年   129篇
  2002年   113篇
  2001年   118篇
  2000年   87篇
  1999年   88篇
  1998年   71篇
  1997年   71篇
  1996年   50篇
  1995年   38篇
  1994年   49篇
  1993年   25篇
  1992年   22篇
  1991年   22篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   18篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有3692条查询结果,搜索用时 156 毫秒
81.
Twenty‐six sites with remnants of gravelly saprolites (grus) have been located in southeast Sweden. Joint block hills (castle kopjes) and steep rock walls with weathered joints as well as rounded boulders are documented to have an origin in deep weathering and subsequent stripping of saprolites. The saprolite remnants and landforms result from the fragmentation of the re‐exposed sub‐Cambrian peneplain along fracture systems. Only shallow saprolites occur on the elevated intact parts of the sub‐Cambrian peneplain, while saprolites up to 20 m thick are encountered in areas where the sub‐Cambrian peneplain is fractured and dissected. Neogene uplift with reactivation of the weathering system is thought to be the main cause of saprolite formation. Deep weathering is thus judged to have been the major agent of landform formation in the study area, while glacial and glaciofluvial erosion has contributed mainly by stripping saprolites, detaching corestones, and plucking joint blocks along weathered joints.  相似文献   
82.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
83.
Johan M. Bonow   《Geomorphology》2005,72(1-4):106-127
Classifications of large-scale landscapes in Greenland have traditionally been based on type and intensity of glacial erosion, with the general idea that present landforms are mainly the result of erosion from ice sheets and glaciers. However, on southern Disko and in areas offshore in Disko Bugt, a basement surface has preserved remnants of weathered gneiss and pre-Paleocene landforms, recently exhumed from Paleocene basalt. Isolated hills and lineaments have been mapped in a digital terrain model and aerial photographs. Offshore have hills been mapped from seismic lines. The medium size bedrock forms on southern Disko as tors, clefts and roche moutonées have been studied in the field. Remnant saprolites were inventoried, sampled and analysed according to grain size and clay mineralogy. The basement surface retains saprolites up to 8 m thick in close relation to the cover rocks. The landforms in the basement rocks belong essentially to an etched surface only slightly remodelled by glacial erosion and, below the highest coastline, also by wave action. The outline of hills is governed by two lineament directions, ENE–WSW representing the schistocity of the gneiss and NW–SE fracture zones. These structures are thus interpreted to have been exploited by the deep weathering while the frequent N–S lineaments have not and thus might be younger. Main ice-flow has been from the NE and has resulted in plucking of SW facing lee sides, however the resulting bedrock forms are mainly controlled by structures and orientation of joints. The identification of re-exposed sub-Paleocene etch forms on Disko and the hills of similar size offshore, forming a hilly relief, have implications for identification of a hilly relief south of Disko Bugt, its relation to younger planation surfaces as well as for conclusions of uplift events.  相似文献   
84.
本文根据理论上灰岩中36Cl的5个来源,论述了36Cl在灰岩深度剖面上的4个分布特征,描述了36Cl的采样方法和AMS的分析技术。计算出北京石花洞地区奥陶纪(O2)灰岩的表面侵蚀速度(ε=17.40μm/a)。  相似文献   
85.
李守德  于达 《探矿工程》2005,32(10):2-5
采用三维有限元方法分析了基坑开挖工程在防渗体出现局部失效情况下,引起渗流在失效部位的集中及渗流场空间状况。提出了以一维通道嵌入三维块体的方法模拟管涌发展过程及渗流场变化特征。讨论了管涌通道渗透性对基坑管涌发展规律的影响。  相似文献   
86.
The measurement of hillslope erosion can be a difficult, costly and time‐consuming activity. Many techniques are available, ranging from using environmental tracers, to LiDAR. Erosion measurements using erosion pins are assessed and compared with regional scale erosion data, hillslope data obtained using 137Cs and erosion modelling results. The pins produced erosion rates which are within the range determined using 137Cs and model data but above that of regional denudation rates. Our findings demonstrate that inexpensive erosion pins can provide reliable data on hillslope erosion. © 2015 Commonwealth of Australia. Hydrological Processes © 2015 John Wiley & Sons Ltd.  相似文献   
87.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
88.
89.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
正20141900Lan Xianhong(Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources,Qingdao 266071,China);Zhang Zhixun Geochemical Characteristics of Trace Elements of Sediments from Drillhole SFK-1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号