首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   267篇
  国内免费   369篇
测绘学   65篇
大气科学   17篇
地球物理   518篇
地质学   995篇
海洋学   240篇
天文学   79篇
综合类   86篇
自然地理   176篇
  2024年   3篇
  2023年   12篇
  2022年   57篇
  2021年   54篇
  2020年   63篇
  2019年   68篇
  2018年   52篇
  2017年   54篇
  2016年   70篇
  2015年   72篇
  2014年   88篇
  2013年   92篇
  2012年   84篇
  2011年   71篇
  2010年   61篇
  2009年   76篇
  2008年   84篇
  2007年   102篇
  2006年   97篇
  2005年   73篇
  2004年   91篇
  2003年   97篇
  2002年   79篇
  2001年   55篇
  2000年   68篇
  1999年   47篇
  1998年   49篇
  1997年   52篇
  1996年   51篇
  1995年   45篇
  1994年   46篇
  1993年   41篇
  1992年   31篇
  1991年   23篇
  1990年   14篇
  1989年   18篇
  1988年   10篇
  1987年   12篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2176条查询结果,搜索用时 15 毫秒
81.
82.
The seismic response of any system that accumulates damage under cyclic loading is dependent not only on the maximum amplitude of the motion but also its duration. This is explicitly recognized in methods for estimating the liquefaction potential of soil deposits. Many researchers have proposed that the effective number of cycles of the ground motion is a more robust indicator of the destructive capacity of the shaking than the duration. However, as is the case with strong‐motion duration, there is no universally accepted approach to determining the effective number of cycles of motion, and the different methods that have been proposed can give widely varying results for a particular accelerogram. Definitions of the effective number of cycles of motion are reviewed, classified and compared. Measurements are found to differ particularly for accelerograms with broad‐banded frequency content, which contain a significant number of non‐zero crossing peaks. The key seismological parameters influencing the number of cycles of motion and associated equations for predicting this quantity for future earthquakes are identified. Correlations between cycle counts and different duration measures are explored and found to be rather poor in the absence of additional parameters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
83.
Creation of the Cocos and Nazca plates by fission of the Farallon plate   总被引:4,自引:0,他引:4  
Peter Lonsdale   《Tectonophysics》2005,404(3-4):237-264
Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos–Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30–20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1–2 km high and parallel to “absolute” Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific–Nazca rise. (ii) For 1–2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly (“Nazca-like”) course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos–Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a “fracture zone” trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos–Nazca spreading began at 23 Ma; reports of older Cocos–Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies.There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.  相似文献   
84.
Anomalous crustal and upper mantle structure of northern Juan de Fuca plate is revealed from wide-angle seismic and gravity modelling. A 2-D velocity model is produced for refraction line II of the 1980 Vancouver Island Seismic Project (VISP80). The refraction data were recorded on three ocean bottom seismometers (OBSs) deployed at the ends and middle of a 110 km line oriented parallel to the North American continental margin. The velocity model is constructed via ray tracing and conforms to first-arrival amplitude observations and travel time picks of direct, converted and reflected phases. Between sub-sediment depths of 3 to 11 km, depths normally associated with the lower crust and upper oceanic mantle, the final model shows that compressional-wave velocities decrease significantly from southeast to northwest along the profile. At sub-sediment depths of 11 km at the northwestern end of the profile, P-wave velocities are as low as 7.2 km/s. A complementary 2-D gravity model using the geometry of the velocity model and velocity–density relationships characteristic of oceanic crust is produced. The high densities required to match the gravity field indicate the presence of peridotites containing 25–30% serpentine by volume, rather than excess gabbroic crust, within the deep low velocity zone. Anomalous travel time delays and unusual reflection characteristics observed from proximal seismic refraction and reflection experiments suggest a broader zone of partially serpentinized peridotites coincident with the trace of a pseudofault. We propose that partial serpentinization of the upper mantle is a consequence of slow spreading at the tip of a propagating rift.  相似文献   
85.
针对城市电力隧道结构、走向多变、电缆设施多、电磁干扰大等因素,常规的监测方法难以顺利完成的现状,对目前先进的3种隧道结构自动化监测系统进行深入的研究比较,光纤传感自动技术解决了电力隧道结构监测点布设困难,数据受电磁干扰大的问题,能实时有效、可靠、高精度地监控电力隧道,及时掌握隧道的应力、应变及振动等主要结构参数,确保隧道结构安全。研究对类似的城市电力隧道自动化监测具有一定的参考意义。  相似文献   
86.
Woodlark Island (Muyuw) is located in a tectonically complex region, one of the few places on Earth where continental breakup is occurring ahead of seafloor spreading. Rifting commenced in the late Miocene (8.8–6 Ma) and is associated with the westward-propagating Woodlark Basin Spreading Centre. The island comprises approximately 850 km2 of raised Pleistocene coral reef and associated sediments with a central, moderately elevated range underlain by the middle Miocene calc-alkaline to shoshonitic Okiduse Volcanic Group (new name). It provides an exposure of upper Cenozoic geology in close proximity to the spreading centre. The Okiduse Volcanic Group is host to most of the island's historical gold and silver production and recently defined mineral resources totalling 1.75 Moz gold. This study uses facies analysis of pyroclastic deposits to develop a detailed geological map of the Okiduse Volcanic Group, with a revision and reinterpretation of the unit. Facies associations suggest that two major volcanic centres erupted synchronously during the middle Miocene (14–12 Ma), referred to as the Watou Mountain Eruptive Centre (new name) and the Uvarakoi Caldera (new name). The mafic–intermediate Watou Mountain Eruptive Centre formed during frequent small eruptions of widely varying style. Strombolian, subplinian, vulcanian and dome-related explosive eruptions occurred, alternating with extrusion of block and ash flow deposits and lava domes. Pyroclastic deposits were rapidly reworked from the steep cone, and were redeposited in a series of coalescing aprons surrounding the volcano. The felsic Uvarakoi Caldera formed during a series of violent explosive eruptions by rapid removal of magma from the underlying chamber, followed by collapse. Plinian and possibly phreatoplinian eruptions, as a result of magma–water mixing in the surface environment, resulted in widely dispersed, highly fragmented tuff deposits. The caldera was modified by widespread erosion following eruptions, resulting in fluvial, laharic and slope-wash deposits. This study highlights lithological controls (porosity and permeability) by various units within the Okiduse Volcanic Group on ore deposition.  相似文献   
87.
王超  刘志宏  宋健  高翔  孙理难 《岩石学报》2016,32(9):2856-2866
近年来古太平洋构造域的构造演化备受学者关注。本文报道的延边开山屯地区花岗闪长岩-石英闪长岩体LAICP-MS U-Pb年龄表明其形成时间为早侏罗世早期(198±1Ma),所采样品可根据Zr/Hf值分为高Zr/Hf值组花岗闪长岩和低Zr/Hf值组石英闪长岩。高Zr/Hf值组花岗闪长岩起源深度浅,富集Rb、Th、U、K等大离子亲石元素(LILEs),贫Nb、Ta、Ti等高场强元素(HFSEs),具壳源岩浆的特点。低Zr/Hf值组为壳源岩浆与来自深部的亏损地幔岩浆混合而成,岩石亏损Nb、Ta、Zr、Hf、Ti等高场强元素,具有典型的弧型岩浆地球化学特征。岩体中存在细粒闪长质包体,镜下可见针柱状磷灰石。开山屯岩体属钙碱性系列岩石,结合前人资料,认为其与该地区同时代火成岩组成北-东向分布的早侏罗世活动大陆边缘型火成岩带,而位于该带西侧的小兴安岭-张广才岭地区存在同时代弧后拉张带,两者构成典型的大陆弧与弧后拉张带模型,共同揭示了早侏罗世早期古太平洋板块对东北地区的俯冲作用。  相似文献   
88.
在流量自动监测系统中,底座式ADCP设备探头位于河底,维修极为不便。该研制装置采用304不锈钢支架配合滑轮、钢索、绞盘等手摇传动系统,将底座式ADCP设备探头从河底传送到水上岸边检修台,实现对设备探头的维护、检修、更换、安装、调试等操作,再通过该装置将底座式ADCP设备探头传送到河底原位,经十里长街等站实际应用,运行稳定可靠,运用极为方便;该装置防磁、防锈、防腐性能良好,为底座式ADCP探头提供一个很好的工作环境,且结构简单,运输方便,可作为中小河流永久流量自动监测站装置使用。  相似文献   
89.
This study has reviewed the distribution and pedogenesis of late Mesozoic A-Type granitoids in SE China. These A-Type granitoids belong to four belts ( S Jiangxi-SW Fujian belt, Xiang-Gui-Yue belt, Can-Hang belt and coastal belt) due to their temporal-spatial distribution. Based on the comparative analysis of chronology, geochemistry and magmatic association, this study has discussed the formation of A-Type granitoids and the subduction and slab rollback process of paleo-Pacific plate beneath SE China.  相似文献   
90.
This paper summarizes rook associations and spatial-Temporal variations of the early Mesozoic igneous rocks in the NE Asia, with the aim of revealing the initial subduction timing of the Paleo-Pacific Plate beneath the Eurasia, and the relationships between the early Mesozoic magmatisms and the Paleo-Asian tectonic system, Mongol-Okhotsk tectonic system, and amalgamation of the Yangtze and North China cratons. Dating results indicate that the early Mesozoic magmatisms in the NE Asia can be subdivided into three stages, i.e., Early-Middle Triassic, Late Triassic, and Early Jurassic. The early Mesozoic calc-Alkaline magmatisms within the Erguna Massif reveal southward subduction of the Mongol-Okhotsk oceanic plate. The Triassic alkaline and bimodal magmatisms within the northern margin of the North China Craton indicate an extensional environment related to the final closure of the Paleo-Asian Ocean. The Late Triassic A-Type rhyo- lites and bimodal magmatisms, together with the Late Triassic stable sedimentary rocks, in eastern Heilongjiang-Jilin provinces, reveal an extensional environment and passive continental margin setting, whereas the Early Jurassic calc-Alkaline magmatisms and its compositional variations, together with the coeval accretionary complex, reveal the onset of the Paleo- Pacific plate beneath the Euirasian continent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号