首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   18篇
  国内免费   43篇
地球物理   21篇
地质学   142篇
海洋学   6篇
天文学   1篇
综合类   4篇
自然地理   1篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1989年   3篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1983年   2篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
131.
内蒙古四子王旗大庙花岗岩体的成因与构造意义   总被引:7,自引:2,他引:7  
内蒙古中部地区晚古生代花岗岩类侵入岩分布广泛,在空间上构成一条巨大的东西向花岗岩带,是研究花岗岩成因和地壳演化的天然实验室.四子王旗北大庙岩体作为一个典型代表,以花岗闪长岩为主,其内部普遍发育镁铁质微粒包体.对理解花岗岩石成因和演化有重要意义.时包体及其寄主岩进行岩相学研究及矿物化学分析,结果显示:包体具塑性外形及岩浆结构,存在多种不平衡矿物组合,是岩浆混合的重要证据;MME中斜长石斑晶边部与核部An值较低,幔部An值较高,黑云母斑晶MgO边部与核部较低,幔部较高,两种矿物相似的成分变化指示结晶环境的改变,从矿物学角度证实存在基性岩浆的反复注入.黑云母及角闪石化学成分上也显示出岩体形成于造山带背景下,岩浆具壳幔混合的特点.岩体形成温度为650℃~700℃左右,压力为1.5×105Pa左右,氧逸度lgfo2较高,约-10~-15.  相似文献   
132.
内蒙白旗地区火山碎斑熔岩斜长石成分及其有序度   总被引:1,自引:0,他引:1  
赖绍聪  隆平 《西北地质》1997,18(3):8-12
白旗碎斑熔岩中斜长石以更长石为主,其有序度低,指示了岩石高温火山成因的特征,从岩体边缘相到中心相至根部相,长石类型,化学成分和有序度具有一定的变化规律,反映了岩体不同岩相带成岩条件的差异性。  相似文献   
133.
The Laki eruption involved 10 fissure-opening episodes thatproduced 15·1 km3 of homogeneous quartz-tholeiite magma.This study focuses on the texture and chemistry of samples fromthe first five episodes, the most productive period of the eruption.The samples comprise pumiceous tephra clasts from early falloutdeposits and lava surface samples from fire-fountaining andcone-building activity. The fluid lava core was periodicallyexposed at the surface upon lobe breakout, and its characteristicsare preserved in glassy selvages from the lava surface. In allsamples, plagioclase is the dominant mineral phase, followedby clinopyroxene and then olivine. Samples contain <7 vol.% of euhedral phenocrysts (>100 µm) with primitivecores [An* = 100 x Ca/(Ca + Na) >70; Fo > 75; En* = 100x Mg/(Mg + Fe) >78] and more evolved rims, and >10 vol.% of skeletal, densely distributed groundmass crystals (<100µm), which are similar in composition to phenocryst rims(tephra: An*58–67, Fo72–78, En*72–81; lava:An*49–70, Fo63–78, En57–78). Tephra and lavahave distinct vesicularity (tephra: >40 vol. %; lava: <40vol. %), groundmass crystal content (tephra: <10 vol. %;lava: 20–30 vol. %), and matrix glass composition (tephra:5·4–5·6 wt % MgO; lava: 4·3–5·0wt % MgO). Whole-rock and matrix glass compositions define atrend consistent with liquid evolution during in situ crystallizationof groundmass phases. Plagioclase–glass and olivine–glassthermometers place the formation of phenocryst cores at 10 kmdepth in a melt with 1 wt % H2O, at near-liquidus temperatures(1150°C). Phenocryst rims and groundmass crystals formedclose to the surface, at 10–40°C melt undercoolingand in an 10–20°C cooler drier magma (0–0·1wt % H2O), causing an 10 mol % drop in An content in plagioclase.The shape, internal zoning and number density of groundmasscrystals indicate that they formed under supersaturated conditions.Based on this information, we propose that degassing duringascent had a major role in rapidly undercooling the melt, promptingintensive shallow groundmass crystallization that affected themagma and lava rheology. Petrological and textural differencesbetween tephra and lava reflect variations in the rates of magmaascent and the timing of surface quenching during each eruptiveepisode. That in turn affected the time available for crystallizationand subsequent re-equilibration of the melt to surface (degassed)conditions. During the explosive phases, the rates of magmaascent were high enough to inhibit crystallization, yieldingcrystal-poor tephra. In contrast, pervasive groundmass crystallizationoccurred in the lava, increasing its yield strength and causinga thick rubbly layer to form during flow emplacement. Lava selvagescollected across the flow-field have strikingly homogeneousglass compositions, demonstrating the high thermal efficiencyof fluid lava transport. Cooling is estimated as 0·3°C/km,showing that rubbly surfaced flows can be as thermally efficientas tube-fed phoehoe lavas. KEY WORDS: lava; crystallization; basalt; cooling rate; pressure; geobarometry; PT conditions; plagioclase; degassing; Laki, Iceland  相似文献   
134.
Kangjoo Kim 《水文研究》2002,16(9):1793-1806
The weathering rate of plagioclase was estimated in the groundwater system of a sandy, silicate aquifer formed after the Wisconsin Glacial Stage. The study area is an isthmus lying between Crystal and Big Muskellunge Lakes in northern Wisconsin, USA. Plagioclase occupies 3% of the quartz and K‐feldspar dominated sediments. Groundwater in the study area is recharged in part by precipitation through the isthmus soils and in part by seepage from Crystal Lake, which is of low ionic strength and chemically in steady state. Water analysis revealed that the chemistry of groundwater recharged from Crystal Lake is regulated by mineral dissolution reactions. The rate constant for plagioclase was estimated using mass balances for sodium concentrations along a groundwater flowline from Crystal Lake. For this calculation, various kinds of hydrological/mineralogical information were used: groundwater flow path from oxygen isotope analysis, groundwater travel times from flow modelling, mineral composition from microprobe analysis and surface area of minerals from BET (Brunauer–Emmett–Teller) analysis. The overall range of the estimation was less than an order of magnitude (3·5 × 10?16 to 3·4 × 10?15 mol/m2/s). The result is up to three orders of magnitude slower than the previous field estimates, which applied geometric methods in measuring mineral surface areas. However, this result is somewhat higher than the estimates reported by other BET area‐based studies, which were undertaken on soil profiles having different hydrological conditions. This rate difference is interpreted as a result of higher mineral reactivity owing to younger sediment age. The rate difference is smaller when this result is compared with the estimates from the soils of similar age, indicating that the differences in hydrological condition are not sufficient to explain the weathering rate discrepancy between the laboratory and field studies, which is up to five orders of magnitude. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
135.
The subduction and exhumation of accretionary prism metasedimentary rocks are accompanied by large‐strain ductile deformations which may be recorded in microstructures. Porphyroblast microstructures have been a key to unravel the kinematics in such deformed belts. Shape‐preferred orientation (SPO) of epidote and amphibole inclusions that define S‐shaped trails in prograde cores of plagioclase porphyroblasts were analysed from the high‐P/T Sambagawa metamorphic rocks. Inclusions are found to be elongate parallel to the [010] and [001] directions, respectively, and their long‐axis orientations define an internal foliation Si (best‐fit great circle) and lineation Li (maximum on the Si). S‐shaped inclusion trails in the orthogonal sections do not exhibit the same geometries, but rather are grouped into two types, where the foliation intersection axes (FIAs) are nearly perpendicular and parallel to Li, respectively. These two types of S‐shaped inclusion trails are seen in the sections inclined at low and high angles to the Li, respectively. However, the latter type commonly consists of composite trails, where the Si is first rotated about an FIA perpendicular to the Li (i.e. unique axis), and then about an FIA parallel to the Li. The S‐shaped inclusion trails are interpreted to have formed by the successive overgrowth of matrix minerals and rotation of the plagioclase porphyroblast cores about a unique axis in non‐coaxial deformation. The rotation of Si about an FIA nearly parallel to the Li is perhaps an apparent rotation, caused by the deflection of foliation around the growing prismatic plagioclase grain prior to inclusion into the porphyroblast. This study has for the first time documented the 3‐D geometry of S‐shaped inclusion trails in porphyroblasts from accretionary prism metasedimentary rocks and identified their origin, which helps to understand the flow kinematics in the deeper part of a subduction channel.  相似文献   
136.
A lower amphibolite Alpine shear zone from the Fibbia metagranite (Gotthard Massif, Central Alps) has been studied to better understand the parameters controlling strain localization in granitic rocks. The strain gradient on the metre‐scale shows an evolution from a weakly deformed metagranite (QtzI–KfsI–AbI–BtI ± PlII–ZoI–PhgI–Grt) to a fine banded ultramylonite (QtzII–KfsII–AbII–PlII–BtII–PhgII ± Grt–ZoII). Strain localization is coeval with dynamic recrystallization of the quartzofeldspathic matrix and a modal increase in mica, at the expense of K‐feldspar. The continuous recrystallization of plagioclase during deformation into a very fine‐grained assemblage forming anastomosed ribbons is interpreted as the dominant process in the shear zone initiation and development. The shear zone initiated under closed‐system conditions with the destabilization of metastable AbI–ZoI porphyroclasts into fine‐grained (20–50 μm sized) AbII–PlII aggregates, and with minor crystallization of phengite at the expense of K‐feldspar. The development of the shear zone requires a change in state of the system, which becomes open to externally derived fluids and mass transfer. Indeed, mass balance calculations and thermodynamic modelling show that the ultramylonite is characterized by gains in CaO, FeO and H2O. The progressive input of externally derived CaO drives the continuous metamorphic recrystallization of the fine‐grained AbII–PlII aggregate into a more PlII‐rich and finer aggregate. Input of water favours the crystallization of phengite at the expense of K‐feldspar to form an interconnected network of weak phases. Thus, recrystallization of 50% of the bulk rock volume would induce a decrease of the strength of the rock that might contribute to the development of the shear zone. This study emphasizes the major role of metamorphic reactions and more particularly plagioclase on strain localization process. Plagioclase represents at least one‐third of the bulk rock volume in granitic systems and forms a stress‐supporting framework that controls the rock rheology. Therefore, recrystallization of plagioclase due to changes in P–T conditions and/or bulk composition must be taken into account, together with quartz and K‐feldspar, in order to understand strain localization processes in granites.  相似文献   
137.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   
138.
Electron microprobe analysis was conducted on plagioclase from the plagioclase ultraphyric basalts(PUBs)erupted on the Southwest Indian Ridge(SWIR)(51°E) to investigate the geochemical changes in order to better understand the magmatic processes occurring under ultraslow spreading ridges and to provide insights into the thermal and dynamic regimes of the magmatic reservoirs and conduit systems. The phenocryst cores are generally calcic(An_(74–82)) and are depleted in FeO and MgO. Whereas the phenocryst rims(An_(67–71)) and the plagioclase in the groundmass(An_(58–63)) are more sodic and have higher FeO and MgO contents than the phenocryst cores. The crystallization temperatures of the phenocryst cores and the calculation of the equilibrium between the phenocrysts and the matrix suggest that the plagioclase cores are unlikely to have crystallized from the host basaltic melt, but are likely to have crystallized from a more calcic melt. The enrichment in incompatible elements(FeO and MgO), as well as the higher FeO/MgO ratios of the outermost phenocryst rims and the groundmass, are the result of plagioclase-melt disequilibrium diffusion during the short residence time in which the plagioclase crystallized. Our results indicate that an evolved melt replenishing under the SWIR(51°E) drives the eruption over a short period of time.  相似文献   
139.
Abstract The Kvamsøy pyroxenite complex consists of olivine websterite, olivine gabbro and leucogabbro-norite which have been subjected to regional high P-T (HPT) metamorphism. The metamorphism has resulted in a range of disequilibrium textures with the development of coronas and pseudomorphism of the igneous phases. Reactions between felsic and mafic mineral domains have been controlled by variable and selective diffusion of elements, resulting in a variety of local plagioclase-breakdown reactions and in significant compositional variations for the product garnet. Restricted diffusion favours transient reaction stages with garnet ± spinel ± corundum ± zoisite after calcic plagioclase in olivine gabbro and olivine websterite and garnet ± spinel ± kyanite ± quartz + sodic plagioclase in leucogabbro-norite. Complete HPT reaction has produced garnet pyroxenite which consists of garnet + diopside + hornblende + zoisite in gabbroic rocks, while amphibolitization continued during the cooling and uplift history. Grt + Ky + Pl + Qtz geobarometry suggests pressures in the range 13-16 kbar for T = 750°C, comparable with the regional eclogite-forming metamorphism.  相似文献   
140.
This paper describes a kinetic study on reaction textures in eclogitic rocks from the Sulu region, eastern China. Some of the eclogitic rocks display a decompressional reaction texture, whereby kyanite grains are surrounded by plagioclase coronas and are never in contact with quartz. The change in mineral parageneses with progress of the reaction was predicted by constructing chemical potential diagrams in a model system. The chemical potential diagrams indicated that the chemical potential of 2Na2O + CaO (2µNa2O + µCaO) in intergranular regions between kyanite and quartz should decrease with decreasing pressure, whereas 2µNa2O + µCaO in intergranular regions between garnet and omphacite should increase with decreasing pressure. Thus, upon decompression, an inequality in chemical potential arises in the rock. To reduce this inequality, garnet and omphacite react to produce amphibole and plagioclase and release Na2O and CaO. Then, the released Na2O and CaO components diffuse into the regions between kyanite and quartz grains and react to produce plagioclase between them. This model also indicates that the chemical potential of SiO2 should decrease around kyanite grains during the progress of the decompressional reaction, and Si‐undersaturated conditions should have formed around kyanite grains in spite of the presence of quartz in these eclogitic rocks. Thus, spinel or corundum that are not stable in the system with excess quartz can form as a metastable phase, as observed in eclogitic rocks from the study areas. Phase diagrams in the system with excess quartz should be carefully applied for analysis of such reaction textures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号